
.

libexplain

Reference Manual

Peter Miller
pmiller@opensource.org.au

.

This document describes libexplain version 1.4
and was prepared 3 March 2014.

This document describing the libexplain library, and the libexplain library itself, are
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either ver-
sion 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this pro-
gram. If not, see <http://www.gnu.org/licenses/>.

0

explain_wait3(3) explain_wait3(3)

status, options, rusage);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

status The original status, exactly as passed to thewait3(2) system call.

options The original options, exactly as passed to thewait3(2) system call.

rusage The original rusage, exactly as passed to thewait3(2) system call.

SEE ALSO
wait3(2) wait for process to change state

explain_wait3_or_die(3)
wait for process to change state and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

1001

explain_wait3_or_die(3) explain_wait3_or_die(3)

NAME
explain_wait3_or_die − wait for process to change state and report errors

SYNOPSIS
#include <libexplain/wait3.h>

void explain_wait3_or_die(int *status, int options, struct rusage *rusage);

DESCRIPTION
Theexplain_wait3_or_diefunction is used to call thewait3(2) system call. On failure an explanation will
be printed tostderr, obtained from explain_wait3(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int pid = explain_wait3_or_die(status, options, rusage);

status The status, exactly as to be passed to thewait3(2) system call.

options The options, exactly as to be passed to thewait3(2) system call.

rusage The rusage, exactly as to be passed to thewait3(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
wait3(2) wait for process to change state

explain_wait3(3)
explainwait3(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

1002

explain_wait4(3) explain_wait4(3)

NAME
explain_wait4 − explain wait4(2) errors

SYNOPSIS
#include <libexplain/wait4.h>

const char *explain_wait4(int pid, int *status, int options, struct rusage *rusage);
const char *explain_errno_wait4(int errnum, int pid, int *status, int options, struct rusage *rusage);
void explain_message_wait4(char *message, int message_size, int pid, int *status, int options, struct rusage
*rusage);
void explain_message_errno_wait4(char *message, int message_size, int errnum, int pid, int *status, int
options, struct rusage *rusage);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thewait4(2) system call.

explain_wait4
const char *explain_wait4(int pid, int *status, int options, struct rusage *rusage);

The explain_wait4 function is used to obtain an explanation of an error returned by thewait4(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (wait4(pid, status, options, rusage) < 0)
{

fprintf(stderr, "%s\n", explain_wait4(pid, status, options, rusage));
exit(EXIT_FAILURE);

}

pid The original pid, exactly as passed to thewait4(2) system call.

status The original status, exactly as passed to thewait4(2) system call.

options The original options, exactly as passed to thewait4(2) system call.

rusage The original rusage, exactly as passed to thewait4(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_wait4
const char *explain_errno_wait4(int errnum, int pid, int *status, int options, struct rusage *rusage);

The explain_errno_wait4 function is used to obtain an explanation of an error returned by thewait4(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (wait4(pid, status, options, rusage) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_wait4(err,

pid, status, options, rusage));
exit(EXIT_FAILURE);

}

1003

explain_wait4(3) explain_wait4(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thewait4(2) system call.

status The original status, exactly as passed to thewait4(2) system call.

options The original options, exactly as passed to thewait4(2) system call.

rusage The original rusage, exactly as passed to thewait4(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_wait4
void explain_message_wait4(char *message, int message_size, int pid, int *status, int options, struct rusage
*rusage);

The explain_message_wait4function may be used to obtain an explanation of an error returned by the
wait4(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (wait4(pid, status, options, rusage) < 0)
{

char message[3000];
explain_message_wait4(message, sizeof(message),

pid, status, options, rusage);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to thewait4(2) system call.

status The original status, exactly as passed to thewait4(2) system call.

options The original options, exactly as passed to thewait4(2) system call.

rusage The original rusage, exactly as passed to thewait4(2) system call.

explain_message_errno_wait4
void explain_message_errno_wait4(char *message, int message_size, int errnum, int pid, int *status, int
options, struct rusage *rusage);

Theexplain_message_errno_wait4function may be used to obtain an explanation of an error returned by
the wait4(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (wait4(pid, status, options, rusage) < 0)
{

int err = errno;
char message[3000];

1004

explain_wait4(3) explain_wait4(3)

explain_message_errno_wait4(message, sizeof(message), err,
pid, status, options, rusage);

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thewait4(2) system call.

status The original status, exactly as passed to thewait4(2) system call.

options The original options, exactly as passed to thewait4(2) system call.

rusage The original rusage, exactly as passed to thewait4(2) system call.

SEE ALSO
wait4(2) wait for process to change state

explain_wait4_or_die(3)
wait for process to change state and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

1005

explain_wait4_or_die(3) explain_wait4_or_die(3)

NAME
explain_wait4_or_die − wait for process to change state and report errors

SYNOPSIS
#include <libexplain/wait4.h>

void explain_wait4_or_die(int pid, int *status, int options, struct rusage *rusage);

DESCRIPTION
Theexplain_wait4_or_diefunction is used to call thewait4(2) system call. On failure an explanation will
be printed tostderr, obtained from explain_wait4(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_wait4_or_die(pid, status, options, rusage);

pid The pid, exactly as to be passed to thewait4(2) system call.

status The status, exactly as to be passed to thewait4(2) system call.

options The options, exactly as to be passed to thewait4(2) system call.

rusage The rusage, exactly as to be passed to thewait4(2) system call.

Returns: This function only returns on success, seewait4(2) for more information. On failure, prints an
explanation and exits.

SEE ALSO
wait4(2) wait for process to change state

explain_wait4(3)
explainwait4(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

1006

explain_wait_or_die(3) explain_wait_or_die(3)

NAME
explain_wait_or_die − wait for process to change state and report errors

SYNOPSIS
#include <libexplain/wait.h>

void explain_wait_or_die(int *status);

DESCRIPTION
Theexplain_wait_or_die function is used to call thewait(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_wait(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_wait_or_die(status);

status The status, exactly as to be passed to thewait(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
wait(2) wait for process to change state

explain_wait(3)
explainwait(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

1007

explain_waitpid(3) explain_waitpid(3)

NAME
explain_waitpid − explain waitpid(2) errors

SYNOPSIS
#include <libexplain/waitpid.h>

const char *explain_waitpid(int pid, int *status, int options);
const char *explain_errno_waitpid(int errnum, int pid, int *status, int options);
void explain_message_waitpid(char *message, int message_size, int pid, int *status, int options);
void explain_message_errno_waitpid(char *message, int message_size, int errnum, int pid, int *status, int
options);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thewaitpid(2) system call.

explain_waitpid
const char *explain_waitpid(int pid, int *status, int options);

The explain_waitpid function is used to obtain an explanation of an error returned by thewaitpid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (waitpid(pid, status, options) < 0)
{

fprintf(stderr, "%s\n", explain_waitpid(pid, status, options));
exit(EXIT_FAILURE);

}

pid The original pid, exactly as passed to thewaitpid(2) system call.

status The original status, exactly as passed to thewaitpid(2) system call.

options The original options, exactly as passed to thewaitpid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_waitpid
const char *explain_errno_waitpid(int errnum, int pid, int *status, int options);

Theexplain_errno_waitpid function is used to obtain an explanation of an error returned by thewaitpid(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (waitpid(pid, status, options) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_waitpid(err,

pid, status, options));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

1008

explain_waitpid(3) explain_waitpid(3)

pid The original pid, exactly as passed to thewaitpid(2) system call.

status The original status, exactly as passed to thewaitpid(2) system call.

options The original options, exactly as passed to thewaitpid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_waitpid
void explain_message_waitpid(char *message, int message_size, int pid, int *status, int options);

Theexplain_message_waitpidfunction may be used toobtain an explanation of an error returned by the
waitpid(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (waitpid(pid, status, options) < 0)
{

char message[3000];
explain_message_waitpid(message, sizeof(message), pid, status, options);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to thewaitpid(2) system call.

status The original status, exactly as passed to thewaitpid(2) system call.

options The original options, exactly as passed to thewaitpid(2) system call.

explain_message_errno_waitpid
void explain_message_errno_waitpid(char *message, int message_size, int errnum, int pid, int *status, int
options);

The explain_message_errno_waitpidfunction may be used to obtain an explanation of an error returned
by thewaitpid(2) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (waitpid(pid, status, options) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_waitpid(message, sizeof(message), err,

pid, status, options);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

1009

explain_waitpid(3) explain_waitpid(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thewaitpid(2) system call.

status The original status, exactly as passed to thewaitpid(2) system call.

options The original options, exactly as passed to thewaitpid(2) system call.

SEE ALSO
waitpid(2)

wait for process to change state

explain_waitpid_or_die(3)
wait for process to change state and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

1010

explain_waitpid_or_die(3) explain_waitpid_or_die(3)

NAME
explain_waitpid_or_die − wait for process to change state and report errors

SYNOPSIS
#include <libexplain/waitpid.h>

int pid = explain_waitpid_or_die(int pid, int *status, int options);

DESCRIPTION
Theexplain_waitpid_or_die function is used to call thewaitpid(2) system call.On failure an explanation
will be printed tostderr, obtained fromexplain_waitpid(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_waitpid_or_die(pid, status, options);

pid The pid, exactly as to be passed to thewaitpid(2) system call.

status The status, exactly as to be passed to thewaitpid(2) system call.

options The options, exactly as to be passed to thewaitpid(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
waitpid(2)

wait for process to change state

explain_waitpid(3)
explainwaitpid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

1011

explain_write(3) explain_write(3)

NAME
explain_write − explain write(2) errors

SYNOPSIS
#include <libexplain/write.h>
const char *explain_write(int fildes, const void *data, long data_size);
const char *explain_errno_write(int errnum, int fildes, const void *data, long data_size);
void explain_message_write(char *message, int message_size, int fildes, const void *data, long data_size);
void explain_message_errno_write(char *message, int message_size, int errnum, int fildes, const void
*data, long data_size);

DESCRIPTION
These functions may be used to obtain explanations forwrite(2) errors .

explain_write
const char *explain_write(int fildes, const void *data, long data_size);

The explain_write function may be used to obtain a human readable explanation of what went wrong in a
write(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

The error number will be picked up from theerrnoglobal variable.

This function is intended to be used in a fashion similar to the following example:
sszie_t n = write(fd, data, data_size);
if (n < 0)
{

fprintf(stderr, ’%s0, explain_read(fd, data, data_size));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to thewrite(2) system call.

data The original data, exactly as passed to thewrite(2) system call.

data_size
The original data_size, exactly as passed to thewrite(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_write
const char *explain_errno_write(int errnum, int fildes, const void *data, long data_size);

The explain_errno_write function may be used to obtain a human readable explanation of what went wrong
in a write(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
sszie_t n = write(fd, data, data_size);
if (n < 0)
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_read(errnum, fd, data,

data_size));
exit(EXIT_FAILURE);

}

1012

explain_write(3) explain_write(3)

errnum The error value to be decoded, usually obtain from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The orginal fildes, exactly as passed to thewrite(2) system call.

data The original data, exactly as passed to thewrite(2) system call.

data_size
The original data_size, exactly as passed to thewrite(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_write
void explain_message_write(char *message, int message_size, int fildes, const void *data, long data_size);

The explain_message_write function may be used to obtain a human readable explanation of what went
wrong in awrite(2) system call.The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

The error number will be picked up from theerrnoglobal variable.

This function is intended to be used in a fashion similar to the following example:
sszie_t n = write(fd, data, data_size);
if (n < 0)
{

char message[3000];
explain_message_read(message, sizeof(message), fd, data,

data_size));
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thewrite(2) system call.

data The original data, exactly as passed to thewrite(2) system call.

data_size
The original data_size, exactly as passed to thewrite(2) system call.

Note: Given a suitably thread safe buffer, this function is thread safe.

explain_message_errno_write
void explain_message_errno_write(char * message, int message_size, int errnum, int fildes, const void
*data, long data_size);

The explain_message_errno_write function may be used to obtain a human readable explanation of what
went wrong in a write(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
sszie_t n = write(fd, data, data_size);
if (n < 0)

1013

explain_write(3) explain_write(3)

{
int err = errno;
char message[3000];
explain_message_errno_read(message, sizeof(message), errno,

fd, data, data_size));
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtain from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thewrite(2) system call.

data The original data, exactly as passed to thewrite(2) system call.

data_size
The original data_size, exactly as passed to thewrite(2) system call.

Note: Given a suitably thread safe buffer, this function is thread safe.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

1014

explain_write_or_die(3) explain_write_or_die(3)

NAME
explain_write_or_die − write to a file descriptor and report errors

SYNOPSIS
#include <libexplain/write.h>

void explain_write_or_die(int fildes, const void *data, long data_size);

DESCRIPTION
Theexplain_write_or_die function is used to call thewrite(2) system call. On failure an explanation will
be printed to stderr, obtained from explain_write(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
ssize_t result = explain_write_or_die(fildes, data, data_size);

fildes The fildes, exactly as to be passed to thewrite(2) system call.

data The data, exactly as to be passed to thewrite(2) system call.

data_size
The data_size, exactly as to be passed to thewrite(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
write(2) write to a file descriptor

explain_write(3)
explainwrite(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

1015

explain_writev(3) explain_writev(3)

NAME
explain_writev − explain writev(2) errors

SYNOPSIS
#include <libexplain/writev.h>

const char *explain_writev(int fildes, const struct iovec *data, int data_size);
const char *explain_errno_writev(int errnum, int fildes, const struct iovec *data, int data_size);
void explain_message_writev(char *message, int message_size, int fildes, const struct iovec *data, int
data_size);
void explain_message_errno_writev(char *message, int message_size, int errnum, int fildes, const struct
iovec *data, int data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thewritev(2) system call.

explain_writev
const char *explain_writev(int fildes, const struct iovec *data, int data_size);

The explain_writev function is used to obtain an explanation of an error returned by thewritev(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thewritev(2) system call.

data The original data, exactly as passed to thewritev(2) system call.

data_size
The original data_size, exactly as passed to thewritev(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = writev(fildes, data, data_size);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_writev(fildes, data,
data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_writev_or_die(3) function.

explain_errno_writev
const char *explain_errno_writev(int errnum, int fildes, const struct iovec *data, int data_size);

The explain_errno_writev function is used to obtain an explanation of an error returned by thewritev(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thewritev(2) system call.

1016

explain_writev(3) explain_writev(3)

data The original data, exactly as passed to thewritev(2) system call.

data_size
The original data_size, exactly as passed to thewritev(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = writev(fildes, data, data_size);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_writev(err, fildes,
data, data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_writev_or_die(3) function.

explain_message_writev
void explain_message_writev(char *message, int message_size, int fildes, const struct iovec *data, int
data_size);

The explain_message_writevfunction is used to obtain an explanation of an error returned by the
writev(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thewritev(2) system call.

data The original data, exactly as passed to thewritev(2) system call.

data_size
The original data_size, exactly as passed to thewritev(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = writev(fildes, data, data_size);
if (result < 0)
{

char message[3000];
explain_message_writev(message, sizeof(message), fildes, data,
data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_writev_or_die(3) function.

explain_message_errno_writev
void explain_message_errno_writev(char *message, int message_size, int errnum, int fildes, const struct
iovec *data, int data_size);

The explain_message_errno_writevfunction is used to obtain an explanation of an error returned by the

1017

explain_writev(3) explain_writev(3)

writev(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thewritev(2) system call.

data The original data, exactly as passed to thewritev(2) system call.

data_size
The original data_size, exactly as passed to thewritev(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = writev(fildes, data, data_size);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_writev(message, sizeof(message), err,
fildes, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_writev_or_die(3) function.

SEE ALSO
writev(2)

write data from multiple buffers

explain_writev_or_die(3)
write data from multiple buffers and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

1018

explain_writev_or_die(3) explain_writev_or_die(3)

NAME
explain_writev_or_die − write data from multiple buffers and report errors

SYNOPSIS
#include <libexplain/writev.h>

ssize_t explain_writev_or_die(int fildes, const struct iovec *data, int data_size);
ssize_t explain_writev_on_error(int fildes, const struct iovec *data, int data_size);

DESCRIPTION
The explain_writev_or_die function is used to call thewritev(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_writev(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_writev_on_error function is used to call thewritev(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_writev(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thewritev(2) system call.

data The data, exactly as to be passed to thewritev(2) system call.

data_size
The data_size, exactly as to be passed to thewritev(2) system call.

RETURN VALUE
The explain_writev_or_die function only returns on success, seewritev(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_writev_on_error function always returns the value return by the wrappedwritev(2) system
call.

EXAMPLE
Theexplain_writev_or_die function is intended to be used in a fashion similar to the following example:

ssize_t result = explain_writev_or_die(fildes, data, data_size);

SEE ALSO
writev(2)

write data from multiple buffers

explain_writev(3)
explainwritev(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

1019

explain_writev_or_die(3) explain_writev_or_die(3)

1000

Table of Contents(libexplain) Table of Contents(libexplain)

The README file 1
Release Notes 3
How to build libexplain 13
How to add a new system call to libexplain 18

explain(1) explain system call error messages. 22
explain_lca2010(1) Nomedium found: when it’s time to stop trying to read strerror’s mind . 33
explain_license(1) GNUGeneral Public License. 50
libexplain(3) Explainerrno values returned by libc functions. 59
explain_accept(3) explain accept(2) errors 83
explain_accept4(3) explain accept4(2) errors. 86
explain_accept4_or_die(3) accepta connection on a socket and report errors. 89
explain_accept_or_die(3) accepta connection on a socket and report errors. 90
explain_access(3) explain access(2) errors 91
explain_access_or_die(3) checkpermissions for a file and report errors. 94
explain_acct(3) explain acct(2) errors 95
explain_acct_or_die(3) switchprocess accounting on or off and report errors 98
explain_acl_from_text(3) explainacl_from_text(3) errors 99
explain_acl_from_text_or_die(3) createan ACL from text and report errors. 102
explain_acl_get_fd(3) explainacl_get_fd(3) errors 103
explain_acl_get_fd_or_die(3) Executeacl_get_fd(3) and report errors 106
explain_acl_get_file(3) explainacl_get_file(3) errors 107
explain_acl_get_file_or_die(3) Executeacl_get_file(3) and report errors. 110
explain_acl_set_fd(3) explainacl_set_fd(3) errors 111
explain_acl_set_fd_or_die(3) setan ACL by file descriptor and report errors. 114
explain_acl_set_file(3) explainacl_set_file(3) errors 115
explain_acl_set_file_or_die(3) setan ACL by filename and report errors. 118
explain_acl_to_text(3) explainacl_to_text(3) errors 119
explain_acl_to_text_or_die(3) convert an ACL to text and report errors. 122
explain_adjtime(3) explain adjtime(2) errors 123
explain_adjtime_or_die(3) smoothlytune kernel clock and report errors. 126
explain_adjtimex(3) explain adjtimex(2) errors. 127
explain_adjtimex_or_die(3) tunekernel clock and report errors. 130
explain_asprintf(3) explainasprintf(3) errors 131
explain_asprintf_or_die(3) printto allocated string and report errors. 134
explain_bind(3) explain bind(2) errors 135
explain_bind_or_die(3) binda name to a socket and report errors. 138
explain_calloc(3) explaincalloc(3) errors. 139
explain_calloc_or_die(3) Allocateand clear memory and report errors. 142
explain_chdir(3) explain chdir(2) errors. 143
explain_chdir_or_die(3) changeworking directory and report errors. 146
explain_chmod(3) explain chmod(2) errors 147
explain_chmod_or_die(3) changepermissions of a file and report errors. 150
explain_chown(3) explain chown(2) errors 151
explain_chown_or_die(3) changeownership of a file and report errors. 154
explain_chroot(3) explain chroot(2) errors 155
explain_chroot_or_die(3) changeroot directory and report errors. 158
explain_close(3) explain close(2) errors. 159
explain_closedir(3) explain closedir(3) errors. 162
explain_closedir_or_die(3) closea directory and report errors 165
explain_close_or_die(3) closea file descriptor and report errors. 166
explain_connect(3) explain connect(2) errors. 167
explain_connect_or_die(3) initiatea connection on a socket and report errors. 170
explain_creat(3) explain creat(2) errors. 171
explain_creat_or_die(3) createand open a file and report errors. 174

Reference Manual libexplain iii

Table of Contents(libexplain) Table of Contents(libexplain)

explain_dirfd(3) explain dirfd(3) errors 175
explain_dirfd_or_die(3) getdirectory stream file descriptor and report errors. 178
explain_dup2(3) explain dup2(2) errors. 179
explain_dup2_or_die(3) duplicatea file descriptor and report errors. 182
explain_dup(3) explain dup(2) errors 183
explain_dup_or_die(3) duplicatea file descriptor and report errors. 186
explain_endgrent(3) explainendgrent(3) errors. 187
explain_endgrent_or_die(3) finish group file accesses and report errors. 190
explain_eventfd(3) explain eventfd(2) errors 191
explain_eventfd_or_die(3) createa file descriptor for event notification and report errors 194
explain_execlp(3) explainexeclp(3) errors 195
explain_execlp_or_die(3) execute a file and report errors. 198
explain_execv(3) explainexecv(3) errors 199
explain_execve(3) explain execve(2) errors 202
explain_execve_or_die(3) execute program and report errors. 205
explain_execv_or_die(3) execute a file and report errors. 206
explain_execvp(3) explain execvp(3) errors 207
explain_execvp_or_die(3) execute a file and report errors. 210
explain_exit(3) print an explanation of exit status before exiting 211
explain_fchdir(3) explain fchdir(2) errors. 212
explain_fchdir_or_die(2) changedirectory and report errors. 215
explain_fchmod(3) explain fchmod(2) errors 216
explain_fchmod_or_die(3) changepermissions of an open file and report errors. 219
explain_fchown(3) explain fchown(2) errors 220
explain_fchownat(3) explain fchownat(2) errors. 223
explain_fchownat_or_die(3) changeownership of a file relative to a directory and report errors. . . 226
explain_fchown_or_die(3) changeownership of a file and report errors. 227
explain_fclose(3) explain fclose(3) errors. 228
explain_fclose_or_die(3) closea stream and report errors. 232
explain_fcntl(3) explain fcntl(2) errors 233
explain_fcntl_or_die(3) manipulatea file descriptor and report errors. 236
explain_fdopen(3) explain fdopen(3) errors 237
explain_fdopendir(3) explain fdopendir(3) errors 240
explain_fdopendir_or_die(3) opena directory and report errors 243
explain_fdopen_or_die(3) streamopen functions and report errors. 244
explain_feof(3) explain feof(3) errors 245
explain_feof_or_die(3) checkand reset stream status and report errors. 248
explain_ferror(3) explain ferror(3) errors. 249
explain_ferror_or_die(3) checkstream status and report errors. 252
explain_fflush(3) explain fflush(3) errors. 253
explain_fflush_or_die(3) flusha stream and report errors. 256
explain_fgetc(3) explain fgetc(3) errors. 257
explain_fgetc_or_die(3) inputof characters and report errors. 260
explain_fgetpos(3) explain fgetpos(3) errors 261
explain_fgetpos_or_die(3) repositiona stream and report errors 264
explain_fgets(3) explain fgets(3) errors. 265
explain_fgets_or_die(3) inputof strings and report errors. 268
explain_filename_from_fildes(3) obtainfi lename from file descriptor. 269
explain_fileno(3) explain fileno(3) errors. 270
explain_fileno_or_die(3) checkand reset stream status and report errors. 273
explain_flock(3) explain flock(2) errors 274
explain_flock_or_die(3) applyor remove an advisory lock on an open file and report errors. . . 277
explain_fopen(3) explain fopen(3) errors. 278
explain_fopen_or_die(3) openfi le and report errors. 281

Reference Manual libexplain iv

Table of Contents(libexplain) Table of Contents(libexplain)

explain_fork(3) explain fork(2) errors 282
explain_fork_or_die(3) createa child process and report errors. 284
explain_fpathconf(3) explain fpathconf(3) errors 285
explain_fpathconf_or_die(3) getconfiguration values for files and report errors. 288
explain_fprintf(3) explain fprintf(3) errors 289
explain_fprintf_or_die(3) formattedoutput conversion and report errors 292
explain_fpurge(3) explain fpurge(3) errors 293
explain_fpurge_or_die(3) purge a stream and report errors. 296
explain_fputc(3) explain fputc(3) errors. 297
explain_fputc_or_die(3) outputof characters and report errors. 300
explain_fputs(3) explain fputs(3) errors 301
explain_fputs_or_die(3) writea string to a stream and report errors. 304
explain_fread(3) explain fread(3) errors. 305
explain_fread_or_die(3) binarystream input and report errors. 308
explain_freopen(3) explain freopen(3) errors. 309
explain_freopen_or_die(3) openfi le and report errors. 312
explain_fseek(3) explain fseek(3) errors 313
explain_fseeko(3) explain fseeko(3) errors 316
explain_fseeko_or_die(3) seekto or report file position and report errors. 319
explain_fseek_or_die(3) repositiona stream and report errors 320
explain_fsetpos(3) explain fsetpos(3) errors 321
explain_fsetpos_or_die(3) repositiona stream and report errors 324
explain_fstat(3) explain fstat(2) errors 325
explain_fstatat(3) explain fstatat(2) errors 328
explain_fstatat_or_die(3) getfi le status relative to a directory file descriptor and report errors. . . 331
explain_fstatfs(3) explain fstatfs(2) errors. 332
explain_fstatfs_or_die(3) getfi le system statistics and report errors. 335
explain_fstat_or_die(3) getfi le status and report errors. 336
explain_fstatvfs(3) explain fstatvfs(2) errors 337
explain_fstatvfs_or_die(3) getfi le system statistics and report errors. 340
explain_fsync(3) explain fsync(2) errors 341
explain_fsync_or_die(3) synchronizea file’s in-core state with storage device and report errors. . 344
explain_ftell(3) explain ftell(3) errors 345
explain_ftello(3) explain ftello(3) errors 348
explain_ftello_or_die(3) getstream position and report errors. 351
explain_ftell_or_die(3) getstream position and report errors. 352
explain_ftime(3) explain ftime(3) errors. 353
explain_ftime_or_die(3) returndate and time and report errors. 356
explain_ftruncate(3) explain ftruncate(2) errors. 357
explain_ftruncate_or_die(3) truncatea file and report errors 360
explain_futimens(3) explain futimens(3) errors 361
explain_futimens_or_die(3) changefi le timestamps with nanosecond precision and report errors. . 364
explain_futimes(3) explain futimes(3) errors 365
explain_futimesat(3) explain futimesat(2) errors. 368
explain_futimesat_or_die(3) changetimestamps of a file relative to a directory andreport errors . . 371
explain_futimes_or_die(3) changefi le timestamps and report errors. 372
explain_fwrite(3) explain fwrite(3) errors. 373
explain_fwrite_or_die(3) binarystream output and report errors. 376
explain_getaddrinfo(3) explain getaddrinfo(3) errors. 377
explain_getaddrinfo_or_die(3) network address translation and report errors. 379
explain_getc(3) explain getc(3) errors 380
explain_getchar(3) explain getchar(3) errors 383
explain_getchar_or_die(3) inputof characters and report errors. 386
explain_getc_or_die(3) inputof characters and report errors. 387

Reference Manual libexplain v

Table of Contents(libexplain) Table of Contents(libexplain)

explain_getcwd(3) explain getcwd(2) errors 388
explain_getcwd_or_die(3) getcurrent working directory and report errors. 391
explain_getdomainname(3) explain getdomainname(2) errors. 392
explain_getdomainname_or_die(3) getdomain name and report errors. 395
explain_getgrent(3) explaingetgrent(3) errors 396
explain_getgrent_or_die(3) getgroup file entry and report errors. 399
explain_getgrouplist(3) explaingetgrouplist(3) errors. 400
explain_getgrouplist_or_die(3) getlist of groups to which a user belongs and report errors. 403
explain_getgroups(3) explain getgroups(2) errors 404
explain_getgroups_or_die(3) getlist of supplementary group IDs and report errors. 407
explain_gethostbyname(3) explaingethostbyname(3) errors 408
explain_gethostbyname_or_die(3) gethost address given host name and report errors. 411
explain_gethostid(3) explaingethostid(3) errors. 412
explain_gethostid_or_die(3) getthe unique identifier of the current host and report errors. 415
explain_gethostname(3) explain gethostname(2) errors 416
explain_gethostname_or_die(3) get/sethostname and report errors. 419
explain_getpeername(3) explain getpeername(2) errors. 420
explain_getpeername_or_die(3) getname of connected peer socket and report errors. 423
explain_getpgid(3) explaingetpgid(2) errors 424
explain_getpgid_or_die(3) getprocess group and report errors. 427
explain_getpgrp(3) explaingetpgrp(2) errors 428
explain_getpgrp_or_die(3) getprocess group and report errors. 431
explain_getpriority(3) explaingetpriority(2) errors 432
explain_getpriority_or_die(3) getprogram scheduling priority and report errors. 435
explain_getresgid(3) explaingetresgid(2) errors. 436
explain_getresgid_or_die(3) getreal, effective and saved group IDs and report errors. 439
explain_getresuid(3) explaingetresuid(2) errors. 440
explain_getresuid_or_die(3) getreal, effective and saved user IDs and report errors. 443
explain_getrlimit(3) explain getrlimit(2) errors. 444
explain_getrlimit_or_die(3) getresource limits and report errors. 447
explain_getrusage(3) explaingetrusage(2) errors 448
explain_getrusage_or_die(3) getresource usage and report errors. 451
explain_getsockname(3) explain getsockname(2) errors. 452
explain_getsockname_or_die(3) getsocket name and report errors. 455
explain_getsockopt(3) explain getsockopt(2) errors. 456
explain_getsockopt_or_die(3) getand set options on sockets and report errors. 459
explain_gettimeofday(3) explain gettimeofday(2) errors 460
explain_gettimeofday_or_die(3) gettime and report errors. 463
explain_getw(3) explaingetw(3) errors 464
explain_getw_or_die(3) inputa word (int) and report errors. 467
explain_iconv(3) explain iconv(3) errors 468
explain_iconv_close(3) explain iconv_close(3) errors 472
explain_iconv_close_or_die(3) deallocatedescriptor for character set conversion and report errors. . . 475
explain_iconv_open(3) explain iconv_open(3) errors 476
explain_iconv_open_or_die(3) allocatedescriptor for character set conversion and report errors. . . . 479
explain_iconv_or_die(3) performcharacter set conversion and report errors. 480
explain_ioctl(3) explain ioctl(2) errors 481
explain_ioctl_or_die(3) controldevice and report errors. 484
explain_kill(3) explain kill(2) errors 485
explain_kill_or_die(3) sendsignal to a process and report errors. 488
explain_lchmod(3) explain lchmod(2) errors 489
explain_lchmod_or_die(3) changepermissions of a file and report errors. 492
explain_lchown(3) explain lchown(2) errors 493
explain_lchownat(3) explain lchownat(2) errors. 496

Reference Manual libexplain vi

Table of Contents(libexplain) Table of Contents(libexplain)

explain_lchownat_or_die(3) Executelchownat(2) and report errors. 499
explain_lchown_or_die(3) changeownership of a file and report errors. 500
explain_license(3) GNULesser General Public License. 501
explain_link(3) explain link(2) errors 504
explain_linkat(3) explain linkat(2) errors. 507
explain_linkat_or_die(3) createa file link relative to directory file descriptors and report errors. 511
explain_link_or_die(3) make a new name for a file and report errors. 512
explain_listen(3) explain listen(2) errors. 513
explain_listen_or_die(3) listenfor connections on a socket and report errors. 516
explain_lseek(3) explain lseek(2) errors. 517
explain_lseek_or_die(3) repositionfi le offset and report errors. 520
explain_lstat(3) explain lstat(3) errors 521
explain_lstat_or_die(3) getfi le status and report errors. 524
explain_lutimes(3) explain lutimes(3) errors 525
explain_lutimes_or_die(3) modifyfi le timestamps and report errors. 528
explain_malloc(3) explain malloc(3) errors 529
explain_malloc_or_die(3) Allocateand free dynamic memory and report errors. 532
explain_mkdir(3) explain mkdir(2) errors. 533
explain_mkdir_or_die(3) createa directory and report errors. 536
explain_mkdtemp(3) explainmkdtemp(3) errors. 537
explain_mkdtemp_or_die(3) createa unique temporary directory and report errors. 540
explain_mknod(3) explainmknod(2) errors 541
explain_mknod_or_die(3) createa special or ordinary file and report errors. 544
explain_mkostemp(3) explainmkostemp(3) errors 545
explain_mkostemp_or_die(3) createa unique temporary file and report errors. 548
explain_mkstemp(3) explainmkstemp(3) errors 549
explain_mkstemp_or_die(3) createa unique temporary file and report errors. 552
explain_mktemp(3) explainmktemp(3) errors 553
explain_mktemp_or_die(3) make a unique temporary filename and report errors. 556
explain_mmap(3) explainmmap(2) errors. 557
explain_mmap_or_die(3) mapfi le or device into memory and report errors. 560
explain_mount(3) explainmount(2) errors 561
explain_mount_or_die(3) mountfi le system and report errors. 564
explain_munmap(3) explainmunmap(2) errors 565
explain_munmap_or_die(3) unmapa file or device from memory and report errors. 568
explain_nanosleep(3) explainnanosleep(2) errors 569
explain_nanosleep_or_die(3) high-resolutionsleep and report errors. 572
explain_nice(3) explain nice(2) errors 573
explain_nice_or_die(3) changeprocess priority and report errors. 576
explain_open(3) explain open(2) errors. 577
explain_openat(3) explainopenat(2) errors 580
explain_openat_or_die(3) opena file relative to a directory file descriptor and report errors. . . 583
explain_opendir(3) explain opendir(3) errors 584
explain_opendir_or_die(3) opena directory and report errors 587
explain_open_or_die(3) openfi le and report errors. 588
explain_output(3) outputerror messages. 589
explain_pathconf(3) explain pathconf(3) errors. 593
explain_pathconf_or_die(3) getconfiguration values for files and report errors. 596
explain_pclose(3) explain pclose(3) errors 597
explain_pclose_or_die(3) processI/O and report errors. 600
explain_pipe2(3) explainpipe2(2) errors 602
explain_pipe2_or_die(3) createpipe and report errors. 605
explain_pipe(3) explain pipe(2) errors 606
explain_pipe_or_die(3) createpipe and report errors. 609

Reference Manual libexplain vii

Table of Contents(libexplain) Table of Contents(libexplain)

explain_poll(3) explainpoll(2) errors 610
explain_poll_or_die(3) wait for some event on a file descriptor and report errors. 613
explain_popen(3) explain popen(3) errors. 614
explain_popen_or_die(3) processI/O and report errors. 617
explain_pread(3) explain pread(2) errors. 618
explain_pread_or_die(3) readfrom a file descriptor at a given offset and report errors. 621
explain_printf(3) explainprintf(3) errors 622
explain_printf_or_die(3) formattedoutput conversion and report errors 625
explain_program_name(3) manipulatethe program name 626
explain_ptrace(3) explainptrace(2) errors 627
explain_ptrace_or_die(3) processtrace and report errors 630
explain_putc(3) explain putc(3) errors 631
explain_putchar(3) explain putchar(3) errors 634
explain_putchar_or_die(3) outputof characters and report errors. 637
explain_putc_or_die(3) outputof characters and report errors. 638
explain_putenv(3) explainputenv(3) errors 639
explain_putenv_or_die(3) changeor add an environment variable and report errors. 642
explain_puts(3) explainputs(3) errors 643
explain_puts_or_die(3) writea string and a trailing newline to stdout and report errors. . . . 646
explain_putw(3) explainputw(3) errors 647
explain_putw_or_die(3) outputa word (int) and report errors 650
explain_pwrite(3) explain pwrite(2) errors 651
explain_pwrite_or_die(3) writeto a file descriptor at a given offset and report errors. 654
explain_raise(3) explain raise(3) errors 655
explain_raise_or_die(3) senda signal to the caller and report errors. 658
explain_read(3) explain read(2) errors 659
explain_readdir(3) explain readdir(2) errors 662
explain_readdir_or_die(3) readdirectory entry and report errors. 665
explain_readlink(3) explain readlink(2) errors. 666
explain_readlink_or_die(3) readvalue of a symbolic link and report errors. 669
explain_read_or_die(3) readfrom a file descriptor and report errors. 670
explain_readv(3) explain readv(2) errors. 671
explain_readv_or_die(3) readdata into multiple buffers and report errors. 674
explain_realloc(3) explain realloc(3) errors 675
explain_realloc_or_die(3) Allocateand free dynamic memory and report errors. 678
explain_realpath(3) explain realpath(3) errors 679
explain_realpath_or_die(3) returnthe canonicalized absolute pathname and report errors. 682
explain_remove(3) explain remove(2) errors 683
explain_remove_or_die(3) deletea file and report errors. 686
explain_rename(3) explain rename(2) errors. 687
explain_rename_or_die(3) changethe name of a file and report errors. 690
explain_rmdir(3) explain rmdir(2) errors. 691
explain_rmdir_or_die(3) deletea directory and report errors. 694
explain_select(3) explain select(2) errors. 695
explain_select_or_die(3) blahblah and report errors. 698
explain_setbuf(3) explainsetbuf(3) errors. 699
explain_setbuffer(3) explainsetbuffer(3) errors 702
explain_setbuffer_or_die(3) streambuffering operations and report errors. 705
explain_setbuf_or_die(3) setstream buffer and report errors. 706
explain_setdomainname(3) explain setdomainname(2) errors. 707
explain_setdomainname_or_die(3) setdomain name and report errors. 710
explain_setenv(3) explainsetenv(3) errors. 711
explain_setenv_or_die(3) changeor add an environment variable and report errors. 714
explain_setgid(3) explainsetgid(2) errors. 715

Reference Manual libexplain viii

Table of Contents(libexplain) Table of Contents(libexplain)

explain_setgid_or_die(3) setgroup identity and report errors. 718
explain_setgrent(3) explainsetgrent(3) errors 719
explain_setgrent_or_die(3) rewind to the start of the group database and report errors. 722
explain_setgroups(3) explain setgroups(2) errors 723
explain_setgroups_or_die(3) setlist of supplementary group IDs and report errors. 726
explain_sethostname(3) explain sethostname(2) errors. 727
explain_sethostname_or_die(3) get/sethostname and report errors. 730
explain_setlinebuf(3) explainsetlinebuf(3) errors 731
explain_setlinebuf_or_die(3) streambuffering operations and report errors. 734
explain_setpgid(3) explainsetpgid(2) errors 735
explain_setpgid_or_die(3) setprocess group and report errors. 738
explain_setpgrp(3) explainsetpgrp(2) errors 739
explain_setpgrp_or_die(3) setprocess group and report errors. 742
explain_setpriority(3) explainsetpriority(2) errors 743
explain_setpriority_or_die(3) setprogram scheduling priority and report errors. 746
explain_setregid(3) explainsetregid(2) errors 747
explain_setregid_or_die(3) setreal and/or effective group ID and report errors. 750
explain_setresgid(3) explainsetresgid(2) errors. 751
explain_setresgid_or_die(3) setreal, effective and saved group ID and report errors. 754
explain_setresuid(3) explainsetresuid(2) errors. 755
explain_setresuid_or_die(3) setreal, effective and saved user ID and report errors. 758
explain_setreuid(3) explainsetreuid(2) errors 759
explain_setreuid_or_die(3) setthe real and effective user ID and report errors. 762
explain_setsid(3) explainsetsid(2) errors. 763
explain_setsid_or_die(3) createsa session and sets the process group ID and report errors. . . . 766
explain_setsockopt(3) explain setsockopt(2) errors. 767
explain_setsockopt_or_die(3) getand set options on sockets and report errors. 770
explain_settimeofday(3) explainsettimeofday(2) errors 771
explain_settimeofday_or_die(3) setssystem time and report errors. 774
explain_setuid(3) explainsetuid(2) errors. 775
explain_setuid_or_die(3) setuser identity and report errors 778
explain_setvbuf(3) explainsetvbuf(3) errors 779
explain_setvbuf_or_die(3) streambuffering operations and report errors. 782
explain_shmat(3) explainshmat(2) errors. 783
explain_shmat_or_die(3) sharedmemory attach and report errors. 786
explain_shmctl(3) explainshmctl(2) errors 787
explain_shmctl_or_die(3) sharedmemory control and report errors. 790
explain_signalfd(3) explain signalfd(2) errors. 791
explain_signalfd_or_die(3) createa file descriptor for accepting signals and report errors. 794
explain_sleep(3) explainsleep(3) errors 795
explain_sleep_or_die(3) Sleepfor the specified number of seconds and report errors. 798
explain_snprintf(3) explainsnprintf(3) errors 799
explain_snprintf_or_die(3) formattedoutput conversion and report errors 802
explain_socket(3) explain socket(2) errors 803
explain_socket_or_die(3) createan endpoint for communication and report errors. 806
explain_socketpair(3) explainsocketpair(2) errors 807
explain_socketpair_or_die(3) createa pair of connected sockets and report errors. 810
explain_sprintf(3) explainsprintf(3) errors 811
explain_sprintf_or_die(3) formattedoutput conversion and report errors 814
explain_stat(3) explain stat(2) errors 815
explain_statfs(3) explain statfs(2) errors. 818
explain_statfs_or_die(3) getfi le system statistics and report errors. 821
explain_stat_or_die(3) getfi le status and report errors. 822
explain_statvfs(3) explainstatvfs(2) errors 823

Reference Manual libexplain ix

Table of Contents(libexplain) Table of Contents(libexplain)

explain_statvfs_or_die(3) getfi le system statistics and report errors. 826
explain_stime(3) explainstime(2) errors 827
explain_stime_or_die(3) setsystem time and report errors. 830
explain_strcoll(3) explainstrcoll(3) errors 831
explain_strcoll_or_die(3) comparetwo strings using the current locale and report errors. . . . 834
explain_strdup(3) explain strdup(3) errors 835
explain_strdup_or_die(3) duplicatea string and report errors. 838
explain_strndup(3) explain strndup(3) errors 839
explain_strndup_or_die(3) duplicatea string and report errors. 842
explain_strtod(3) explain strtod(3) errors. 843
explain_strtod_or_die(3) convert ASCII string to floating-point number and report errors. . . . 846
explain_strtof(3) explain strtof(3) errors. 847
explain_strtof_or_die(3) convert ASCII string to floating-point number and report errors. . . . 850
explain_strtol(3) explain strtol(3) errors. 851
explain_strtold(3) explain strtold(3) errors 854
explain_strtold_or_die(3) convert ASCII string to floating-point number and report errors. . . . 857
explain_strtoll(3) explain strtoll(3) errors. 858
explain_strtoll_or_die(3) convert a string to a long integer and report errors. 861
explain_strtol_or_die(3) convert a string to a long integer and report errors. 862
explain_strtoul(3) explain strtoul(3) errors 863
explain_strtoull(3) explain strtoull(3) errors 866
explain_strtoull_or_die(3) convert a string to an unsigned long integer and report errors. 869
explain_strtoul_or_die(3) convert a string to an unsigned long integer and report errors. 870
explain_symlink(3) explain symlink(2) errors 871
explain_symlink_or_die(3) make a new name for a file and report errors. 874
explain_system(3) explain system(3) errors 875
explain_system_or_die(3) execute a shell command and report errors. 878
explain_tcdrain(3) explain tcdrain(3) errors 880
explain_tcdrain_or_die(3) Executetcdrain(3) and report errors 883
explain_tcflow(3) explain tcflow(3) errors 884
explain_tcflow_or_die(3) terminalflow control and report errors. 887
explain_tcflush(3) explain tcflush(3) errors 888
explain_tcflush_or_die(3) discardterminal data and report errors. 891
explain_tcgetattr(3) explain tcgetattr(3) errors 892
explain_tcgetattr_or_die(3) getterminal parameters and report errors. 895
explain_tcsendbreak(3) explain tcsendbreak(3) errors. 896
explain_tcsendbreak_or_die(3) sendterminal line break and report errors. 899
explain_tcsetattr(3) explain tcsetattr(3) errors 900
explain_tcsetattr_or_die(3) setterminal attributes and report errors. 903
explain_telldir(3) explain telldir(3) errors. 904
explain_telldir_or_die(3) returncurrent location in directory stream and report errors. 907
explain_tempnam(3) explain tempnam(3) errors. 908
explain_tempnam_or_die(3) createa name for a temporary file and report errors. 911
explain_time(3) explain time(2) errors 912
explain_time_or_die(3) gettime in seconds and report errors. 915
explain_timerfd_create(3) explain timerfd_create(2) errors. 916
explain_timerfd_create_or_die(3) timersthat notify via file descriptors and report errors. 919
explain_tmpfile(3) explain tmpfile(3) errors 920
explain_tmpfile_or_die(3) createa temporary file and report errors. 923
explain_tmpnam(3) explain tmpnam(3) errors 924
explain_tmpnam_or_die(3) createa name for a temporary file and report errors. 927
explain_truncate(3) explain truncate(2) errors. 928
explain_truncate_or_die(3) truncatea file and report errors 931
explain_uname(3) explainuname(2) errors 932

Reference Manual libexplain x

Table of Contents(libexplain) Table of Contents(libexplain)

explain_uname_or_die(3) getname and information about current kernel and report errors. . . . 935
explain_ungetc(3) explainungetc(3) errors 936
explain_ungetc_or_die(3) pusha character back to a stream and report errors. 939
explain_unlink(3) explain unlink(2) errors 940
explain_unlink_or_die(3) deletea file and report errors. 943
explain_unsetenv(3) explainunsetenv(3) errors 944
explain_unsetenv_or_die(3) remove an environment variable and report errors. 947
explain_usleep(3) explainusleep(3) errors 948
explain_usleep_or_die(3) suspendexecution for microsecond intervals and report errors. . . . 951
explain_ustat(3) explain ustat(2) errors. 952
explain_ustat_or_die(3) getfi le system statistics and report errors. 955
explain_utime(3) explain utime(2) errors. 956
explain_utimens(3) explainutimens(2) errors 959
explain_utimensat(3) explainutimensat(2) errors 962
explain_utimensat_or_die(3) changefi le timestamps with nanosecond precision and report errors. . 965
explain_utimens_or_die(3) changefi le last access and modification times and report errors. . . . 966
explain_utime_or_die(3) changefi le last access and modification times and report errors. . . . 967
explain_utimes(3) explainutimes(2) errors 968
explain_utimes_or_die(3) changefi le last access and modification times and report errors. . . . 971
explain_vasprintf(3) explainvasprintf(3) errors. 972
explain_vasprintf_or_die(3) printto allocated string and report errors. 975
explain_vfork(3) explainvfork(2) errors 976
explain_vfork_or_die(3) createa child process and block parent and report errors. 979
explain_vfprintf(3) explainvfprintf(3) errors 980
explain_vfprintf_or_die(3) formattedoutput conversion and report errors 983
explain_vprintf(3) explainvprintf(3) errors 984
explain_vprintf_or_die(3) formattedoutput conversion and report errors 987
explain_vsnprintf(3) explainvsnprintf(3) errors. 988
explain_vsnprintf_or_die(3) formattedoutput conversion and report errors 991
explain_vsprintf(3) explainvsprintf(3) errors 992
explain_vsprintf_or_die(3) formattedoutput conversion and report errors 995
explain_wait(3) explain wait(2) errors 996
explain_wait3(3) explain wait3(2) errors. 999
explain_wait3_or_die(3) wait for process to change state and report errors. 1002
explain_wait4(3) explain wait4(2) errors.1003
explain_wait4_or_die(3) wait for process to change state and report errors. 1006
explain_wait_or_die(3) wait for process to change state and report errors. 1007
explain_waitpid(3) explain waitpid(2) errors1008
explain_waitpid_or_die(3) wait for process to change state and report errors. 1011
explain_write(3) explain write(2) errors.1012
explain_write_or_die(3) writeto a file descriptor and report errors. 1015
explain_writev(3) explain writev(2) errors1016
explain_writev_or_die(3) writedata from multiple buffers and report errors. 1019

Reference Manual libexplain xi

Read Me(libexplain) ReadMe(libexplain)

NAME
libexplain − Explain errno values returned by libc functions

DESCRIPTION
The libexplainpackage provides a library which may be used to explain Unix and Linux system call errors.
This will make your application’s error messages much more informative to your users.

The library is not quite a drop-in replacement forstrerror(3), but it comes close. Each system call has a
dedicated libexplain function, for example

fd = open(path, flags, mode);
if (fd < 0)
{

fprintf(stderr, "%s\n", explain_open(path, flags, mode));
exit(EXIT_FAILURE);

}
If, for example, you were to try to openno-such-dir/some-file , you would see a message like

open(pathname = "no-such-dir/some-file", flags = O_RDONLY) failed,
No such file or directory (2, ENOENT) because there is no "no-
such-dir" directory in the current directory

The good new is that for each of these functions there is a wrapper function, in this case
explain_open_or_die(3), that includes the above code fragment. Adding good error reporting is as simple
as using a different, but similarly named, function. The library also provides thread safe variants of each
explanation function.

Coverage includes 221 system calls and 547 ioctl requests.

Tutorial Documentation
There is a paper available in PDF format (http://libexplain.sourceforge.net/lca2010/lca2010.pdf) that
describes the library and how to use LibExplain. The paper can also be accessed asexplain_lca2010(1),
which also appears in the reference manual (see below).

HOME PAGE
The latest version oflibexplain is available on the Web from:

URL: http://libexplain.sourceforge.net/
File: index.html #the libexplain page
File: libexplain.1.4.README #Description, from the tar file
File: libexplain.1.4.lsm #Description, LSM format
File: libexplain.1.4.tar.gz #the complete source
File: libexplain.1.4.pdf #Reference Manual

BUILDING LIBEXPLAIN
Full instructions for buildinglibexplainmay be found in theBUILDING fi le included in this distribution.

COPYRIGHT
libexplainversion 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

Library License
The shared library, and its include files, are GNU LGPL licensed.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program. If
not, see <http://www.gnu.org/licenses/>.

Reference Manual libexplain 1

Read Me(libexplain) ReadMe(libexplain)

Non-Library License
Everything else (all source files that do not constitute the shared library and its include files) are GNU GPL
licensed.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual libexplain 2

Read Me(libexplain) ReadMe(libexplain)

RELEASE NOTES
This section details the various features and bug fixes of the various releases.For excruciating and
complete detail, and also credits for those of you who have generously sent me suggestions and bug reports,
see theetc/CHANGES.*fi les.

Coverage includes 221 system calls and 547 ioctl requests.

Version 1.4 (2014-Mar-03)
• Numerous false negative test results, have been fixed on FreeBSD.

• When building on FreeBSD some interesting flags need to be specified
CC=gvc46 \ CPPFLAGS=−I/usr/local/include \ LDFLAGS=−L/usr/local/lib \

Also care must be taken if an earlier version of libexplain is installed, and can be found on
$LD_LIBRARY_PATH, this may cause false negatives.

• This change set adds mor efixes for FreeBSD compilation.

• Some problems discovered using the clang compiler have been fixed. Thisis a work in progress.

• My thanks to Vinxxe <vinxxe@gmail.com> for reporting a problem compiling from source.

• Explanations are now available for errors reported by thelchownat(2), linkat(2), mount(2), nanosleep(3),
settimeofday(2), sleep(3), uname(2), usleep(3), system calls.

• Added a work-around for gethostnameonDarwin/OSX.

• This change set borrows some of the glib nanosleep fixes.

Version 1.3 (2013-Nov-19)
• Explanations are now available or errors reported by theacl_from_text(3), acl_get_fd(3), acl_get_file(3),

acl_set_fd(3), acl_set_file(3), acl_to_text(3), asprintf(3), avasprintf(3), endgrent(3), fchownat(2),
fseek(3), fstatat(2), ftello(3), futimensat(2), futimens(3), getgrent(3), getgrouplist(3), gethostid(3),
getprioriy(2), iconv_close(3), iconv(3), iconv_open(3), lutimes(2), openat(2), pipe2(2), setgrent(3),
setpriority(2) andstrcoll(3) system calls.

• Themalloc(3), et a, diagnostics are now more aware ofgetrlimi (2) andgetrusage(2), in order to give
more informative messages.

• YunQiang Su <wzssyqa@gmail.com> build problem where a symbol is #defined, but it’s empty,
throwing a warning about uninitialized members.
Debian: Closes: #723409

• Chris Leick <c.leick@vollbio.de> contributed a German message translation.

• Eric Smith <brouhaha@fedoraproject.org> discovered that test 555 could give a false negative if process
666 exists when the test is run.

Version 1.2 (2013-Mar-14)

Reference Manual libexplain 3

Read Me(libexplain) ReadMe(libexplain)

• Explanations are now available for errors reported by the gethostbyname and getrusage system calls.

• Emanuel Haupt <ehaupt@FreeBSD.org> discovered that libexplain coped poorly with different versions
of bison emitting code chunks in different orders. =======

• getrusage system call. Explanations are now available for errors reported by thegethostbynam(3)
andgetrusage(2) system calls.

• Emanuel Haupt <ehaupt@FreeBSD.org> discovered that libexplain coped poorly with different versions
of bison emitting code chunks in different orders.

• This change set copes with the absence of a v4l2_buffer member, which recently happened in Ubuntu
Raring. My thanks to the LaunchPad PPA build farm for finding this problem.

Version 1.1 (2012-Nov-20)
• Explanations are now available for errors reported by theexecv(3), getresgid(2), getresuid(2), lchmod(2),

setgid(2) setregid(2), setresgid(2), setresuid(2), setreuid(2), setuid(2) andutimens(2) system calls.

• Emanuel Haupt <ehaupt@critical.ch> discovered that the error handling forshmat(2) on BSD needed
more portability work.

• There are newexplain_filename_from_stream andexplain_filename_from_fildes
functions to the public API. This gives library clients access to libexplain’s idea of the filename.

• Michael Cree <mcree@orcon.net.nz> discovered that there was a problem building libexplain on alpha
architecture.
Debian: Closes: #661440

Version 1.0 (2012-May-19)
• Sev eral testing false negative has been fix, concerning EACCES when executed by root.

Version 0.52 (2012-Mar-04)
• A false negative in test 76, where Linux security modules change therename(2) semantics.

• A problem on sparc64 has been fixed. Libexplain can now cope with a missing O_LARGEFILE
declaration, and yet file flags returned by the kernel have the flag set.

• A build problem on Debian alpha has been fixed, the name of an include file was incorrect.

Version 0.51 (2012-Jan-26)
• Theptrace(2) support has been improved with more conditionals determined by the ./configure script

when building.
Debian: Closes: #645745

Version 0.50 (2012-Jan-16)

Reference Manual libexplain 4

Read Me(libexplain) ReadMe(libexplain)

• SpepS <spepsforge@users.sf.net> and Eric Smith <eric@brouhaha.com> discovered that
_PC_MIN_HOLE_SIZE isn’t supported for all Linux. Some more #ifdef was added.

• Sev eral false negatives from tests have been fixed.
Debian: Closes: 654199

• The tarball now includes a libexplain.spec file for building an RPM package usingrpmbuild(1).

• This change set makes the exe(readlink) string search less particular, so that it works in more cases. In
this instance, on Fedora 14.

• Explanations are nowe available for errors reported by therealpath(3) system call.

Version 0.49 (2011-Nov-10)
• Explanations are now available for errors reported by theshmctl(2) system call.

• Some build problems (discovered by the LaunchPad PPA buid farm) have been fixed.

Version 0.48 (2011-Nov-08)
• Explanations are now available for errors reported by theshmat(2) system call.

• Several build problems on Solaris have been fixed.

• Dagobert Michelsen <dam@opencsw.org> found the test 625 was throwing a false negative in his test
environment. It can now cope with stdin being closed.

• Dagobert Michelsen <dam@opencsw.org> discovered that, on Solaris, test false negatives were caused
by the need for a space before the width in a “fmt −w 800 ” command.

• Eric Smith <eric@brouhaha.com> discovered thatlsof(1) could report errors as executable names, when
it couldn’t read the symlink. These non-results are now filtered out.

• Eric Smith <eric@brouhaha.com> discovered three false negatives from tests of thekill (2) system call.

• Better explanations are now available when a user attempts to execute a directory.

Version 0.47 (2011-Sep-27)
• Explanations are now available for errors reported by thesetsid(2) system call.

• The Ubuntu PPA build farm found several Hardy build problems. These have been fixed.

• Code has been added to detect those cases where a file descriptor may be open for reading and writing,
but the I/O stream it is accessed by is only open for one of them.

• Code has been added to cope with false negatives whenlsof(1) is not as helpful as could be desired.

• Michael Bienia <geser@ubuntu.com> discovered a build problem with the SIOCSHWTSTAMP ioctl
request, and sent a patch.

Version 0.46 (2011-Aug-24)

Reference Manual libexplain 5

Read Me(libexplain) ReadMe(libexplain)

• LibExplain has been ported to Solaris 8, 9 and 10. My thanks to Dagobert Michelsen and
http://opencsw.org/ for assistance with this port.

• Sev eral more Linuxioctl(2) requests are supported.

• A segfault has been fixed in the output tee filter when handling exit.

Version 0.45 (2011-Jul-17)
• Dagobert Michelsen <dam@opencsw.org> discoversed several build problems on OpenSolaris; these

have been fixed.

• Explanations are now available for errors reported by the Linuxioctl(2) V4L1 system calls.

Version 0.44 (2011-Jul-03)
• Several build problem to do with older Linux kernels have been fixed.

Version 0.42 (2011-Jul-02)
• Explanations are now available for errors reported by the V4L2 ioctl requests.

• The Debian package no longer installs the libtool *.la file.
Debian: Closes: 621621

• The call arguments printed for ioctl(2) now include the type of the third argument.

• The error messages now include more information about block and character special devices, when
printing file types.

Version 0.42 (2011-May-26)
• This change set adds an “ldconfig” hint to the BUILDING instructions. My thanks to Blake McBride

<blake@arahant.com> for this suggestion.

• Emanuel Haupt <ehaupt@critical.ch> reported several problems building libexplain on FreeBSD. These
have been fixed.

Version 0.41 (2011-Mar-15)
• There were some C++ keywords in the unclude files, which caused problems for C++ users. They

have been replaced.

• Explanations are now availaible for errors reported by thegetpgid(2), getpgrp(2), ptrace(2), setgpid(2)
andsetpgrp(2) system calls.

Version 0.40 (2010-Oct-05)
• The code now builds and tests successfully on FreeBSD.

• Explanations are now available for errors reported by thecalloc(3) andpoll(2) system calls.

Version 0.39 (2010-Sep-12)

Reference Manual libexplain 6

Read Me(libexplain) ReadMe(libexplain)

• A build problem has been fixed on Ubuntu Hardy, a number of symbols are absent from older versions of
<linux/cdrom.h>, conditional code has been added for them.

• A bug has been fixed in one of the documentation files, it was missing the conditional around the.XX
macro, causingrpmlint(1) andlintian(1) to complain.

Version 0.38 (2010-Sep-08)
• Some build problems on Fedora 13 have been fixed.

Version 0.37 (2010-Aug-27)
• The library source files are supposed to be LGPL, however over 1000 of them were GPL (about 20%).

This has been fixed.

• A couple of problems building on Fedora 13 have been fixed.

Version 0.36 (2010-Aug-25)
• Several false negative reported by tests on the Linux “alpha” and “ia64” architectures have been fixed.

Version 0.35 (2010-Aug-15)
• A number of falve neg atives from tests have been fixed, primarily due to random differences between

Linux architectures.

• The BUILDING document goes into more detail about things that can cause false negatives when testing.

• The man pages have been fixed so that they no longer contain unescaped hyphen characters, as warned
about by thelintian(1) program.

Version 0.34 (2010-Aug-07)
• Another test 33 false negative has been fixed.

• There is a new “hanging-indent” option, that can be set from theEXPLAIN_OPTIONenvironment
variable. Itdefaults to zero for backwards compatibility. Applications may set it using the
explain_option_hanging_indent_set(3) function.

Version 0.33 (2010-Jul-04)
• A number of testing false negatives (found by the Debian build farm) have been fixed.

• There are newexplain_output_error(3) andexplain_output_error_and_die(3) functions for printing
formatted error messages.

• Some systems havemmap(2) report(void*)(−1) instead of NULL for errors. This is now
understood.

Version 0.32 (2010-Jun-22)
• Explanations are now available for errors reported by themmap(2), munmap(2) andutimes(2) system

calls.

• A number of false negatives for tests on some less common architectures have been fixed.

• Some build problems relating toioctl(2) support have been fixed.

• A bug has been fixed in thelibexplain/output.h fi le, it was missing the C++ insulation.

Version 0.31 (2010-May-01)

Reference Manual libexplain 7

Read Me(libexplain) ReadMe(libexplain)

• A number of build problems have been fixed.

Version 0.30 (2010-Apr-28)
• Several test false negatives hav ebeen fixed, on various Debian architectures.

Version 0.29 (2010-Apr-25)
• A number of build problems, discovered by the Debian build farm, have been fixed. Whowould of

thought that there could be some much inconsistency between Linux architectures?

Version 0.28 (2010-Apr-19)
• Several architecture-specific build problems, found by the Debian build farm, have been fixed.

Version 0.27 (2010-Apr-17)
• Several architecture-specific build problems, found by the Debian build farm, have been fixed.

Version 0.26 (2010-Apr-06)
• A build problem has been fixed on systems whereva_list is not compatible withconst void *

• This change set removes the unused-result warning formexplain_lseek_or_die(3), because it is very
common to ignore the result.

• Explanations are now available for errors reported by thesocketpair(2) system call.

Version 0.25 (2010-Mar-22)
• Portability of the code has been improved.

• Theexplain(3) man page now mentions AC_SYS_LARGEFILE in the building requirements.

• Coverage now includes thefprintf(3), printf(3), snprintf(3), sprintf(3), vfprintf(3), vprintf(3), vsnprintf(3)
andvsprintf(3) system calls.

Version 0.24 (2010-Mar-03)
• It is now possible to redirected libexplain output.For example, it is now possible to redirect all output to

syslog(3).

• Coverage now includes thefstatvfs(2) andstatvfs(2) system call.

• A number of problems found while building and testing on Solaris have been fixed.

Version 0.23 (2010-Feb-21)
• It turns out that on alpha architecture, you can’t disambiguate the FIBMAP vs BMP_IOCTL case in the

pre-processor. The code now uses a disambiguate function. This problem was discovered by the Debian
build farm.

Version 0.22 (2010-Feb-12)
• This change set fixes a false negative found by the Debian automated build system.

Version 0.21 (2010-Feb-09)

Reference Manual libexplain 8

Read Me(libexplain) ReadMe(libexplain)

• Explanations are now available for errors reported by thefpurge(3), getw(3) andputw(3) system calls.

• Some build problems have been fixed.

Version 0.20 (2010-Jan-20)
• Several lintian warnings relating to the man pages have been fixed.

• The LIBEXPLAIN_OPTIONS environment variable now understands a new symbolic-mode-bits=true
option. Itdefaults to false, for shorter error explanations.

• There is a newexplain_lca2010(1) man page. This is a gentle introduction to libexplain, and the paper
accompanying my LCA 2010 talk.

• When process ID (pid) values are printed, they are now accompanied by the name of the process
executable, when available.

• Numerous build bugs and niggles have been fixed.

• Explanations are now available for errors reported by theexeclp(3), fdopendir(3), feof(3), fgetpos(3),
fputs(3), fseek(3), fsetpos(3), fsync(2), ftell(3), mkdtemp(3), mknod(2), mkostemp(3), mkstemp(3),
mktemp(3), putenv(3), puts(3), raise(3), setbuf(3), setbuffer(3), setenv(3), setlinebuf(3), setvbuf(3),
stime(2), tempnam(3), tmpfile(3), tmpnam(3), ungetc(3), unsetenv(3) andvfork(2) system calls.

• The ioctl requests from linux/sockios.h, linux/ext2_fs.h, linux/if_eql.h, PPP, linux/lp.h, and linux/vt.h are
now understood. Several of the ioctl explanations have been improved.

Version 0.19 (2009-Sep-07)
• The ioctl requests from linux/hdreg.h are now understood.

• Some build problems on Debian Lenny hav ebeen fixed.

Version 0.18 (2009-Sep-05)
• More ioctl requests are understood.

• Explanations are now available for errors reported by thetcsendbreak(3), tcsetattr(3), tcgetattr(3),
tcflush(3), tcdrain(3), system calls.

Version 0.17 (2009-Sep-03)
• Explanations are now available for errors reported by thetelldir(3) system call.

• A number of Linux build problems have been fixed.

• Explanations for a number of corner-cases of theopen(2) system call have been improved, where flags
values interact with file types and mount options.

• A number of BSD build problems have been fixed.

• More ioctl(2) commands are understood.

• A bug has been fixed in the way absolute symbolic links are processed by the path_resolution code.

Version 0.16 (2009-Aug-03)

Reference Manual libexplain 9

Read Me(libexplain) ReadMe(libexplain)

• The EROFS and ENOMEDIUM explanations now greatly improved.

• A number of build problems and false negatives hav ebeen fixed on x86_64 architecture.

• The Linux floppy disk and CD-ROM ioctl requests are now supported.

• Explanations are now available for the errors reported by thegetdomainname(2), readv(2),
setdomainname(2), ustat(2) andwritev(2) system calls.

Version 0.15 (2009-Jul-26)
• A number of build errors and warnings on amd64 have been fixed. Theproblems were only detectable

on 64-bit systems.

Version 0.14 (2009-Jul-19)
• Coverage now includes another 29 system calls:accept4(2), acct(2), adjtime(3), adjtimex(2), chroot(2),

dirfd(3), eventfd(2), fflush(3), fileno(3), flock(2), fstatfs(2), ftime(3), getgroups(2), gethostname(2),
kill (2), nice(2), pread(2), pwrite(2), sethostname(2), signalfd(2), strdup(3), strtod(3), strtof(3), strtol(3),
strtold(3), strtoll(3), strtoul(3), strtoull(3), andtimerfd_create(2). A total of 110 system calls are now
supported

• The ./configure script no longer demandslsof(1). TheLinux libexplain code doesn’t needlsof(1). On
systems not supported bylsof(1), the error messages aren’t quite as useful, but libexplain still works.

• There is now an explain_*_on_error function for each system call, each reports errors but still
returns the original return value to the caller.

Version 0.13 (2009-May-17)
• The web site now links to a number of services provided by SourceForge.

• Several problems have been fixed with compiling libexplain on 64-bit systems.

Version 0.12 (2009-May-04)
• A build problem has been fixed on hosts that didn’t need to do anything special for large file support.

Version 0.11 (2009-Mar-29)
• The current directory is replaced in messages with an absolute path in cases where the user’s idea of the

current directory may differ from that of the current process.

Version 0.10 (2009-Mar-24)
• The name prefix on all of the library functions has been changed from “libexplain_” to just “explain_”.

This wasthemost requested change.You will need to change your code and recompile. Apologies for
the inconvenience.

Version 0.9 (2009-Feb-27)

Reference Manual libexplain 10

Read Me(libexplain) ReadMe(libexplain)

• Tw o false negatives in the tests have been fixed.

• The ./configure script now explicitly looks forbison(1), and complains if it cannot be found.

• Thesocket(7) address family is now decoded.

Version 0.8 (2009-Feb-14)
• A problem with the Debian packaging has been fixed.

• The decoding of IPv4 sockaddr structs has been improved.

Version 0.7 (2009-Feb-10)
• Coverage has been extended to includegetsockopt(2), getpeername(2), getsockname(2) and

setsockopt(2).

• Build problems on Debian Sid have been fixed.

• More magnetic tape ioctl controls, from operating systems other than Linux, have been added.

Version 0.6 (2009-Jan-16)
• Coverage has been extended to includeexecvp(3), ioctl(2), malloc(3), pclose(3), pipe(2), popen(3) and

realloc(3) system calls.

• The coverage forioctl(2) includes linux console controls, magnetic tape controls, socket controls, and
terminal controls.

• A false negative from test 31 has been fixed.

Version 0.5 (2009-Jan-03)
• A build problem on Debian sid has been fixed.

• There is a newexplain_system_success(3) function, that performs all that
explain_system_success_or_die(3) performs, except that it does not callexit(2).

• There is more i18n support.

• A bug with thepkg-config(1) support has been fixed.

Version 0.4 (2008-Dec-24)
• Coverage now includesaccept(2), bind(2), connect(2), dup2(2), fchown(2), fdopen(3), fpathconf(2),

fputc(2), futimes(2), getaddrinfo(2), getcwd(2), getrlimit (2), listen(2), pathconf(2), putc(2), putchar(2),
select(2).

• Internationalization has been improved.

• The thread safety of the code has been improved.

• The code is now able to be compiled on OpenBSD. The test suite still gives many false negatives, due to
differences instrerror(3) results.

Version 0.3 (2008-Nov-23)

Reference Manual libexplain 11

Read Me(libexplain) ReadMe(libexplain)

• Cover has been extended to includeclosedir(3), execve(2), ferror(3), fgetc(3), fgets(3), fork(2), fread(3),
getc(3), gettimeofday(2), lchown(2), socket(2), system(3), utime(2), wait3(2), wait4(2), wait(2),
waitpid(2),

• More internationalization support has been added.

• A bug has been fixed in the C++ insulation.

Version 0.2 (2008-Nov-11)
• Coverage now includeschmod(2), chown(2), dup(2), fchdir(2), fchmod(2), fstat(2), ftruncate(2),

fwrite(3), mkdir(2), readdir(3), readlink(2), remove(3), rmdir(2) andtruncate(2).

• The lsof(1) command is used to obtain supplementary file information on those systems with limited
/proc implementations.

• The explanations now understand Linux capabilities.

Version 0.1 (2008-Oct-26)
First public release.

Reference Manual libexplain 12

Build(libexplain) Build(libexplain)

NAME
How to build libexplain

SPACE REQUIREMENTS
You will need about 6MB to unpack and build thelibexplainpackage. Your milage may vary.

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your
installation of libexplain

libcap Linux needs libcap, for access to capabilities.
ftp://ftp.kernel.org/pub/linux/libs/security/linux−privs/kernel−2.2/

lsof
For systems with inadequate or non-existent /proc facilities, and that includes *BSD and MacOS
X, the lsof(1) program is needed to obtain supplementary information about open file descriptors.
However, if lsof(1) is not supported on your operating system, libexplain will still work, but some
useful information (such as translating file descriptors into the name of the open file) will be
absent from error explanations.

ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/
http://people.freebsd.org/˜abe/

You must have lsof(1) installed on *BSD and Solaris, otherwise the test suite will generate
staggering numbers of false negatives. Itwill produce less informative error messages, too.

Supported systems include: Free BSD, HP/UX, Linux, Mac OS X, NetBSD, Open BSD, Solaris,
and several others.

GNU libtool
The libtool program is used to build shared libraries. It understands the neccesary, weird and
wonderful compiler and linker tricks on many weird and wonderful systems.
http://www.gnu.org/software/libtool/

bison The bison program is a general-purpose parser generator that converts a grammar description for
an LALR(1) context-free grammar into a C program to parse that grammar.
http://www.gnu.org/software/bison/

GNU Groff
The documentation for thelibexplainpackage was prepared using the GNU Groff package
(version 1.14 or later). This distribution includes full documentation, which may be processed
into PostScript or DVI files at install time − if GNU Groff has been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done
so already. This is not essential. libexplain was developed using the GNU C compiler, and the
GNU C libraries.

The GNU FTP archives may be found atftp.gnu.org , and are mirrored around the world.

SITE CONFIGURATION
The libexplain package is configured using theconfigureprogram included in this distribution.

Theconfigureshell script attempts to guess correct values for various system-dependent variables used
during compilation, and creates theMakefileandlibexplain/config.hfi les. Italso creates a shell script
config.statusthat you can run in the future to recreate the current configuration.

Normally, you justcd to the directory containinglibexplain’s source code and then type
$./configure −−prefix=/usr
...lots of output...
$

If you’re usingcshon an old version of System V, you might need to type
% sh configure −−prefix=/usr
...lots of output...

Reference Manual libexplain 13

Build(libexplain) Build(libexplain)

%
instead, to prevent cshfrom trying to executeconfigureitself.

Runningconfiguretakes a minute or two. Whileit is running, it prints some messages that tell what it is
doing. If you don’t want to see the messages, runconfigureusing the quiet option; for example,

$./configure −−prefix=/usr −−quiet
$

To compile thelibexplain package in a different directory from the one containing the source code, you
must use a version ofmakethat supports the VPATH variable,such asGNU make, cd to the directory where
you want the object files and executables to go and run theconfigurescript. Theconfigurescript
automatically checks for the source code in the directory thatconfigureis in and in .IR .. (the parent
directory). Iffor some reasonconfigureis not in the source code directory that you are configuring, then it
will report that it can’t find the source code. In that case, runconfigurewith the option−−srcdir= DIR,
whereDIR is the directory that contains the source code.

By default,configurewill arrange for themake installcommand to install thelibexplain package’s files in
/usr/local/bin, /usr/local/lib, /usr/local/include, and /usr/local/man. There are options which allow you to
control the placement of these files.

−−prefix= PA TH
This specifies the path prefix to be used in the installation. Defaults to/usr/localunless otherwise
specified.

−−exec−prefix= PA TH
You can specify separate installation prefixes for architecture-specific files files. Defaults to
${prefix} unless otherwise specified.

−−bindir= PA TH
This directory contains executable programs. On a network, this directory may be shared
between machines with identical hardware and operating systems; it may be mounted read-only.
Defaults to${exec_prefix}/binunless otherwise specified.

−−mandir= PA TH
This directory contains the on-line manual entries. On a network, this directory may be shared
between all machines; it may be mounted read-only. Defaults to${prefix}/manunless otherwise
specified.

configureignores most other arguments that you give it; use the−−help option for a complete list.

On systems that require unusual options for compilation or linking that thelibexplainpackage’sconfigure
script does not know about, you can giveconfigureinitial values for variables by setting them in the
environment. InBourne-compatible shells, you can do that on the command line like this:

$ CC=’gcc −ansi’ LIBS=−lposix ./configure
...lots of output...
$

Here are themakevariables that you might want to override with environment variables when running
configure.

Variable: CC
C compiler program. The default isgcc.

Variable: CPPFLAGS
Preprocessor flags, commonly defines and include search paths. Defaults to empty. It is common
to useCPPFLAGS=−I/usr/local/include to access other installed packages.

Variable: INSTALL
Program to use to install files. Thedefault isinstall(1) if you have it, cp(1) otherwise.

Variable: LIBS
Libraries to link with, in the form−l foo−l bar. Theconfigurescript will append to this, rather
than replace it. It is common to useLIBS=−L/usr/local/lib to access other installed

Reference Manual libexplain 14

Build(libexplain) Build(libexplain)

packages.

If you need to do unusual things to compile the package, the author encourages you to figure out how
configurecould check whether to do them, and mail diffs or instructions to the author so that they can be
included in the next release.

BUILDING LIBEXPLAIN
All you should need to do is use the

$ make
...lots of output...
$

command and wait. Thiscan take a long time, as there are a few thousand files to be compiled.

You can remove the program binaries and object files from the source directory by using the
$ make clean
...lots of output...
$

command. To remove all of the above files, and also remove theMakefileandlibexplain/config.hand
config.statusfi les, use the

$ make distclean
...lots of output...
$

command.

The fileetc/configure.ac is used to createconfigureby a GNU program calledautoconf. You only need to
know this if you want to regenerateconfigureusing a newer version ofautoconf.

TESTING LIBEXPLAIN
The libexplainpackage comes with a test suite.To run this test suite, use the command

$ make sure
...lots of output...
Passed All Tests
$

The tests take a fraction of a second each, with most very fast, and a couple very slow, but it varies greatly
depending on your CPU.

If all went well, the message
Passed All Tests

should appear at the end of the make.

Sources of False Negatives
There are a number of factors that can cause tests to fail unnecessarily.

Root You will get false negatives if you run the tests as root.

Architecture
Some errors move around depending on architecture (sparcvsx86vss390,etc). Someev en
move around due to different memory layout for 32-bitvs64-bit, for the same processor family.
For example, when testing EFAULT explanations.

strerror Different systems have differentstrerror(3) implementations (the numbers vary, the texts vary, the
existence varies,etc). Thiscan even be incompatible across Linux architectures when ABI
compatibility was the goal,e.g.sparcvs i386.

ioctl There are (at least) three inconsistent implementations of ioctl request macros, all incompatible,
depending on Unix vendor. They also vary on Linux, depending on architecture, for ABI
compatibility reasons.

Environment
Some tests are difficult because the build-and-test environment can vary widely. Sometimes it’s a
chroot, sometimes it’s a VM, sometimes it’s fakeroot, sometimes it really is running as root. All

Reference Manual libexplain 15

Build(libexplain) Build(libexplain)

these affect the ability of the library to probe the system looking for the proximal cause of the
error,e.g.ENOSPC or EROFS. Thisoften results in 2 or 4 or 8 explanations of an error,
depending on what the library finds,e.g.existence of useful information in the mount table, or
not.

Mount Table
If you run the tests in a chroot jail build environment, maybe with bind mounts for the file
systems, it is necessary to make sure/etc/mtab(or equivalent) has sensable contents, otherwise
some of the path resolution tests will return false negatives.

/proc If your system has a completely inadequate/proc implementation (including, but not limited to:
*BSD, Mac OS X, and Solaris) or no/proc at all,and you have not installed thelsof(1) tool,
then large numbers of tests will return false negatives.

As these problem have occured, many of the tests have been enhanced to cope, but not all false negative
situations have yet been discovered.

INSTALLING LIBEXPLAIN
As explained in theSITE CONFIGURATIONsection, above, the libexplainpackage is installed under the
/usr/localtree by default. Usethe−−prefix= PA TH option toconfigureif you want some other path.
More specific installation locations are assignable, use the−−help option toconfigurefor details.

All that is required to install thelibexplainpackage is to use the
make install
...lots of output...
#

command. Controlof the directories used may be found in the first few lines of theMakefilefi le and the
other files written by theconfigurescript; it is best to reconfigure using theconfigurescript, rather than
attempting to do this by hand.

Note: if you are doing a manual install (as opposed to a package build) you will also need to run the
ldconfig
#

command. Thisupdates where the system thinks all the shared libraries are. And since we just installed
one, this is a good idea.

GETTING HELP
If you need assistance with thelibexplainpackage, please do not hesitate to contact the author at

Peter Miller <pmiller@opensource.org.au>
Any and all feedback is welcome.

When reporting problems, please include the version number given by the
$ explain −version
explain version 1.4.D001
...warranty disclaimer...
$

command. Pleasedo not send this example; run the program for the exact version number.

Reference Manual libexplain 16

Build(libexplain) Build(libexplain)

COPYRIGHT
libexplainversion 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

The libexplainpackage is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Seethe GNU Lesser General Public License for more details.

It should be in theLICENSEfi le included with this distribution.

AUTHOR
Peter Miller E-Mail: pmiller@opensource.org.au
/\/* WWW: http://www.canb.auug.org.au/˜millerp/

Reference Manual libexplain 17

New-System-Call(libexplain) New-System-Call(libexplain)

NAME
new system call − How to add a new system call to libexplain

DESCRIPTION
Adding a new system call to libexplain is both simple and tedious.

In this example, the system call is calledexample, and takes two arguments,pathnameandflags.
example(const char *pathname, int flags);

The libexplain library presents a C interface to the user, and explains the C system calls. It tries to avoid
dynamic memory, and has several helper functions and structures to make this simpler.

Naming Conventions
In general, one function per file. Thisgives the static linker more opportunity to leave things out, thus
producing smaller executables. Exceptionsto make use ofstatic common functions are acceptable. No
savings for shared libraries, of course.

Functions that write their output into aexplain_string_buffer_tvia theexplain_string_buffer_*
functions, all have a filename oflibexplain/buffer/ something.

Functions that write their output to amessage, message_sizepair have amessage path component in their
fi le name.

Functions that accept anerrnovalue as an argument have an errno path component in their file name,
callederrnum . If a function has both a buffer and an errno, the buffer comes first, both in the argument
list, and the file’s name. Ifa function has both a message+size and an errno, the message comes first, both
in the argument list, and the file’s name.

MODIFIED FILES
Note that thecodegen command does most of the work for you.Pass it the function prototype (in single
quotes) and it will do most of the work.

$ bin/codegen ’ example(const char *pathname, int flags);’
creating catalogue/ example
$

then you mast edit thecatalogue/ example fi le to make any adjustment necessary. This file is then
used to do the boring stuff:

$ bin/codegen example
creating explain/syscall/ example.c
creating explain/syscall/ example.h
creating libexplain/buffer/errno/ example.c
creating libexplain/buffer/errno/ example.h
creating libexplain/ example.c
creating libexplain/ example.h
creating libexplain/ example_or_die.c
creating man/man3/explain_ example.3
creating man/man3/explain_ example_or_die.3
creating test_ example/main.c
modify explain/syscall.c
modify libexplain/libexplain.h
modify man/man1/explain.1
modify man/man3/explain.3
$

All of these files have been added to the Aegis change set. Edit the last 4 to place the appended line in their
correct positions within the files, respecting the symbol sort ordering of each file.

libexplain/libexplain.h
The libexplain/libexplain.h include file defines the user API. It, and any files it includes, are
installed into$(prefix)/include by make install.

This file needs another include line. This means that the entire API is available to the user as a single

18

New-System-Call(libexplain) New-System-Call(libexplain)

include directive.

#include <libexplain/ example.h>

This file is also used to decide which files are installed by themake installcommand.

Take care that none of those files, directly or indirectly, wind up includinglibexplain/config.h
which is generated by theconfigurescript, and hasno namespace protection.

This means you can’t#include <stddef.h> , or use any of the types it defines, because on older
systemsconfigureworks quite hard to cope with its absence. Ditto<unistd.h> and<sys/types.h> .

explain/main.c
Include the include file for the new function, and add the function to the table.

man/man1/explain.1
Add a description of the new system call.

man/man3/libexplain.3
Add your new man pages, man/man3/explain_example.3 and man/man3/explain_example_or_die.3, to the
list. Keep the list sorted.

NEW FILES
Note that thecodegen command does most of the work for you.Pass it the function prototype (in single
quotes) and it will do most of the work.

libexplain/buffer/errno/ example.c
The central file for adding a new example islibexplain/buffer/errno/ example.c Which defines
a function

void explain_buffer_errno_ example(explain_string_buffer_t *buffer,
int errnum, const char *pathname, int flags);

Theerrnum argument holds theerrnovalue. Notethat callingerrnousually has problems because many
systems haveerrnoas a macro, which makes the compiler barf, and because there are times you want
access to the globalerrno, and having it shadowed by the argument is a nuisance.

This function writes its output into the buffer via theexplain_string_buffer_printf , etc,
functions. Firstthe argument list is reprinted.

Theexplain_string_buffer_puts_quoted function should be used to print pathnames, because
it uses full C quoting and escape sequences.

If an argument is a file descriptor, it should be calledfildes, short for “file descriptor”. On systems capable
of it, the file descriptor can be mapped to a pathname using the
explain_buffer_fildes_to_pathname function. Thismakes explanations for system calls like
readandwrite much more informative.

Next comes a switch on the errnum value, and additional explanation is given for each errno value
documented (or sometimes undocumented) for that system call. Copy-and-paste of the man page is often
useful as a basis for the text of the explanation, but be sure it is open source documentation, and not
Copyright proprietary text.

Don’t forget to check the existinglibexplain/buffer/e*.h fi les for pre-canned explanations for
common errors. Some pre-canned explanations include

EACCES explain_buffer_eacces
EADDRINUSE explain_buffer_eaddrinuse
EAFNOSUPPORT explain_buffer_eafnosupport
EBADF explain_buffer_ebadf
EFAULT explain_buffer_efault
EFBIG explain_buffer_efbig
EINTR explain_buffer_eintr
EINVAL explain_buffer_einval_vague,etc

19

New-System-Call(libexplain) New-System-Call(libexplain)

EIO explain_buffer_eio
ELOOP explain_buffer_eloop
EMFILE explain_buffer_emfile
EMLINK explain_buffer_emlink
ENAMETOOLONG explain_buffer_enametoolong
ENFILE explain_buffer_enfile
ENOBUFS explain_buffer_enobufs
ENOENT explain_buffer_enoent
ENOMEM explain_buffer_enomem
ENOTCONN explain_buffer_enotconn
ENOTDIR explain_buffer_enotdir
ENOTSOCK explain_buffer_enotsock
EROFS explain_buffer_erofs
ETXTBSY explain_buffer_etxtbsy
EXDEV explain_buffer_exdev

libexplain/buffer/errno/example.h
This file holds the function prototype for the above function definition.

libexplain/example.h
The file contains the user visible API for theexamplesystem call. There are fiv e function prototypes
declared in this file:

void explain_ example_or_die(const char *pathname, int flags);
void explain_ example(const char *pathname, int flags);
void explain_errno_ example(int errnum, const char *pathname, int flags);
void explain_message_ example(const char *message, int message_size,
const char *pathname, int flags);
void explain_message_errno_ example(const char *message, int
message_size, int errnum, const char *pathname, int flags);

The function prototypes for these appear in thelibexplain/ example.h include file.

Each function prototype shall be accompanied by thorough Doxygen style comments. These are extracted
and placed on the web site.

The buffer functions arenever part of the user visible API.

libexplain/example_or_die.c
One function per file,explain_ example_or_die in this case. It simply callsexampleand then, if fails,
explain_ exampleto print why, and then exit(EXIT_FAILURE).

libexplain/example.c
One function per file,explain_ examplein this case. It simply callsexplain_errno_ exampleto pass
in the globalerrnovalue.

libexplain/errno/example.c
One function per file,explain_errno_ examplein this case. It calls
explain_message_errno_ example, using the<libexplain/global_message_buffer.h>
to hold the string.

libexplain/message/example.c
One function per file,explain_message_ examplein this case. It simply calls
explain_message_errno_ exampleto pass in the globalerrnovalue.

libexplain/message/errno/example.c
One function per file,explain_message_errno_ examplein this case. It declares and initializes a
explain_string_buffer_t instance, which ensures that the message buffer will not be exceeded,
and passes that buffer to theexplain_buffer_errno_ examplefunction.

20

New-System-Call(libexplain) New-System-Call(libexplain)

man/man3/explain_example.3
This file also documents the error explanations functions, exceptexplain_ example_or_dir . Use the
same text as you did inlibexplain/ example.h

man/man3/explain_example_or_die.3
This file also documents the helper function. Use the same text as you did inlibexplain/ example.h

explain/example.c
Glue to turn the command line into arguments to a call toexplain_ example

explain/example.h
Function prototype for the above.

test_example/main.c
This program should callexplain_ explain_or_die .

NEW IOCTL REQUESTS
Each differentioctl(2) request is, in effect, yet another system call. Except that they all have appallingly
bad type safety. I have seen fugly C++ classes with less overloading thanioctl(2).

libexplain/iocontrol/request_by_number.c
This file has one include line for eachioctl(2) request. There is atable array that contains a
pointer to the explain_iocontrol_t variable declared in the include file (see next). Keep both sets of
lines sorted alphabetically, it makes it easier to detect duplicates.

libexplain/iocontrol/name.h
Wherenameis the name of theioctl(2) request in lower case. This declares an global const
variable describing how to handle it.

libexplain/iocontrol/name.c
This defines the above global variable, and defines any static glue functions necessary to print a
representation of it.You will probably have to read the kernel source to discover the errors the
ioctl can return, and what causes them, in order to write the explanation function; they are almost
never described in the man pages.

TESTS
Write at least one separate test for each case in the errnum switch.

Debian Notes
You can check that the Debian stuff builds by using

apt-get install pbuilder
pbuiler create
pbuilder login

now copy the files fromweb-site/debian/into the chroot
cd libexplain−*
dpkg−checkbuilddeps
apt−get installwhat dpkg−checkbuilddeps said
apt−get install devscripts
debuild

This should report success.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

21

explain(1) explain(1)

NAME
explain − explain system call error messages

SYNOPSIS
explain [option...] function[argument...]

explain −−version

DESCRIPTION
The explain command is used to decode an error return read from anstrace(1) listing, or silimar. Because
this is being deciphered in a different process than the orginal, the results will be less accurate than if the
program itself were to uselibexplain(3).

Functions
The functions understood include:

acceptfildes addr addrlen
Theaccept(2) system call.

accept4fildes[[sock_addr sock_addr_size] flags]
Theaccept4(2) system call.

accesspathname
Theaccess(2) system call.

acctpathname
Theacct(2) system call.

acl_from_texttext
Theacl_from_text(3) system call.

acl_get_fdfildes
Theacl_get_fd(3) system call.

acl_get_filepathname type
Theacl_get_file(3) system call.

acl_set_fdfildes acl
Theacl_set_fd(3) system call.

acl_set_filepathname type acl
Theacl_set_file(3) system call.

acl_to_textacl len_p
Theacl_to_text(3) system call.

adjtimedelta olddelta
Theadjtime(2) system call.

adjtimexdata
Theadjtimex(2) system call.

asprintf Theasprintf(3) system call.

bind fildes addr sockaddr_size
Thebind(2) system call.

callocnmemb size
Thecalloc(3) system call.

chdirpathname
Thechdir(2) system call.

22

explain(1) explain(1)

chmodpathname permission-mode
Thechmod(2) system call.

chownpathname owner group
Thechown(2) system call.

chrootpathname
Thechroot(2) system call.

closefildes
Theclose(2) system call.

closedirdir
Theclosedir(3) system call.

connectfildes serv_addr serv_addr_size
Theconnect(2) system call.

creatpathname[permission-mode
Thecreat(2) system call.

dirfd dir Thedirfd(3) system call.

dupfildes
Thedup(2) system call.

dup2oldfd newfd
Thedup2(2) system call.

endgrent Theendgrent(3) system call.

ev entfd initval flags
Theeventfd(2) system call.

execlp pathname arg...
Theexeclp(3) system call.

execv pathname argv
Theexecv(3) system call.

execvepathname arg...
Theexecve(2) system call.

execvppathname arg...
Theexecvp(3) system call.

fchdir pathname
Thefchdir(2) system call.

fchmodfildes mode
Thefchmod(2) system call.

fchownfildes owner group
Thefchown(2) system call.

fchownatdirfd pathname owner group flags
Thefchownat(2) system call.

fclosefp Thefclose(3) system call.

fcntl fildes command[arg]
Thefcntl(2) system call.

fdopenfd mode
Thefdopen(3) system call.

23

explain(1) explain(1)

fdopendirfildes
Thefdopendir(3) system call.

feof fp Thefeof(3) system call.

ferror fp Theferror(3) system call.

ff lushfp Thefflush(3) system call.

fgetcfp Thefgetc(3) system call.

fgetposfp pos
Thefgetpos(3) system call.

fgetsdata data_size fp
Thefgets(3) system call.

fi lenofp Thefileno(3) system call.

flock fildes command
Theflock(2) system call.

fork Thefork(2) system call.

fpathconffildes name
Thefpathconf(3) system call.

fpurgefp
Thefpurge(3) system call.

freadptr size nmemb fp
Thefread(3) system call.

fopenpathname mode
Thefopen(2) system call. Thepathnameargument may need to be quoted to insulate white space
and punctuation from the shell. Themodeargument (a textual equivalent of theopensystem
call’s flagsargument). Seefopen(3) for more information.

fputcc [fp]
Thefputc(3) system call.

fputss fp
Thefputs(3) system call.

freopenpathname flags fp
Thefreopen(3) system call.

fseekfp offset whence
Thefseek(3) system call.

fseekofp offset whence
Thefseeko(3) system call.

fsetposfp pos
Thefsetpos(3) system call.

fstatpathname
Thefstat(2) system call.

fstatatfildes pathname data flags
Thefstatat(2) system call.

fstatfsfildes data
Thefstatfs(2) system call.

fstatvfsfildes data
Thefstatvfs(2) system call.

24

explain(1) explain(1)

fsyncfildes
Thefsync(2) system call.

ftell fp Theftell(3) system call.

ftello fp Theftello(3) system call.

ftime tp Theftime(3) system call.

ftruncatefildes length
Theftruncate(2) system call.

futimensfildes data
Thefutimens(3) system call.

futimesfildes tv[0] data[1]
Thefutimes(3) system call.

futimesatfildes pathname data
Thefutimesat(2) system call.

getcfp Thegetc(3) system call.

getchar Thegetchar(3) system call.

getcwdbuf size
Thegetcwd(2) system call.

getdomainnamedata data_size
Thegetdomainname(2) system call.

getgrent Thegetgrent(3) system call.

getgrouplistuser group groups ngroups
Thegetgrouplist(3) system call.

getgroupsdata_size data
Thegetgroups(2) system call.

gethostbynamename
Thegethostbyname(3) system call.

gethostid
Thegethostid(3) system call.

gethostname [data data_size]
Thegethostname(2) system call.

getpeernamefildes sock_addr sock_addr_size
Thegetpeername(2) system call.

getpgidpid
Thegetpgid(2) system call.

getpgrppid
Thegetpgrp(2) system call.

getprioritywhich who
Thegetpriority(2) system call.

getresgidrgid egid sgid
Thegetresgid(2) system call.

getresuidruid euid suid
Thegetresuid(2) system call.

getrlimit resource rlim
Thegetrlimit (2) system call.

25

explain(1) explain(1)

getrusagewho usage
Thegetrusage(2) system call.

getsocknamefildes[sock_addr[sock_addr_size]]
Thegetsockname(2) system call.

getsockoptfildes level name data data_size
Thegetsockopt(2) system call.

gettimeofday [tv [tz]]
Thegettimeofday(2) system call.

getwfp Thegetw(3) system call.

iconvcd inbuf inbytesleft outbuf outbytesleft
The iconv(3) system call.

iconv_closecd
The iconv_close(3) system call.

iconv_opentocode fromcode
The iconv_open(3) system call.

ioctl fildes request data
The ioctl(2) system call.

kill pid sig
Thekill (2) system call.

lchmodpathname mode
The lchmod(2) system call.

lchownpathname owner group
The lchown(2) system call.

lchownatfildes pathname uid gid
The lchownat(2) system call.

link oldpath newpath
The link(2) system call.

linkat old_fildes old_path new_fildes new_path flags
The linkat(2) system call.

listenfildes backlog
The listen(2) system call.

lseekfildes offset whence
The lseek(2) system call.

lstatpathname
The lstat(2) system call.

lutimespathname data
The lutimes(3) system call.

mallocsize
Themalloc(3) system call.

mkdir pathname[mode]
Themkdir(2) system call.

mkdtemppathname
Themkdtemp(3) system call.

mknodpathname mode dev
Themknod(2) system call.

26

explain(1) explain(1)

mkostemptemplat flags
Themkostemp(3) system call.

mkstemptemplat
Themkstemp(3) system call.

mktemppathname
Themktemp(3) system call.

mmapdata data_size prot flags fildes offset
Themmap(2) system call.

mountsource target file_systems_type flags data
Themount(2) system call.

munmapdata data_size
Themunmap(2) system call.

nanosleepreq rem
Thenanosleep(2) system call.

nice inc Thenice(2) system call.

openpathname flags[mode]
Theopen(2) system call. Thepathnameargument may need to be quoted to insulate white space
and punctuation from the shell. Theflagsargument may be numeric or symbolic. Themode
argument may be numeric or symbolic.

openatfildes pathname flags mode
Theopenat(2) system call. Theflagsargument may be numeric or symbolic. Themode
argument may be numeric or symbolic.

opendirpathname
Theopendir(3) system call.

pathconfpathname name
Thepathconf(3) system call.

pclosefp
Thepclose(3) system call.

pipepipefd
Thepipe(2) system call.

pipe2fildes flags
Thepipe2(2) system call.

poll fds nfds timeout
Thepoll(2) system call.

popencommand flags
Thepopen(3) system call.

preadfildes data data_size offset
Thepread(2) system call.

ptracerequest pid addr data
Theptrace(2) system call.

putcc fp Theputc(3) system call.

putcharc
Theputchar(3) system call.

putenvstring
Theputenv(3) system call.

27

explain(1) explain(1)

putss Theputs(3) system call.

putwvalue fp
Theputw(3) system call.

pwrite fildes data data_size offset
Thepwrite(2) system call.

raisesig Theraise(3) system call.

readfildes data data-size
Theread(2) system call.

reallocptr size
Therealloc(3) system call.

realpathpathname resolved_pathname
Therealpath(3) system call.

renameoldpath newpath
Therename(2) system call.

readvfildes iov...
Thereadv(2) system call.

selectnfds readfds writefds exceptfds timeout
Theselect(2) system call.

setbuffp data
Thesetbuf(3) system call.

setbufferfp data size
Thesetbuffer(3) system call.

setdomainnamedata data_size
Thesetdomainname(2) system call.

setenvname value overwrite
Thesetenv(3) system call.

setgidgid
Thesetgid(2) system call.

setgrent Thesetgrent(3) system call.

setgroupsdata_size data
Thesetgroups(2) system call.

sethostnamename[name_size]
Thesethostname(2) system call.

setlinebuffp
Thesetlinebuf(3) system call.

setpgid [pid [pgid]]
Thesetpgid(2) system call.

setpgrppid pgid
Thesetpgrp(2) system call.

setprioritywhich who prio
Thesetpriority(2) system call.

setregidrgid egid
Thesetregid(2) system call.

28

explain(1) explain(1)

setreuidruid euid
Thesetreuid(2) system call.

setresgidrgid egid sgid
Thesetresgid(2) system call.

setresuidruid euid suid
Thesetresuid(2) system call.

setreuidruid euid
Thesetreuid(2) system call.

setsid Thesetsid(2) system call.

setsockoptfildes level name data data_size
Thesetsockopt(2) system call.

settimeofdaytv tz
Thesettimeofday(2) system call.

setuiduid
Thesetuid(2) system call.

setvbuffp data mode size
Thesetvbuf(3) system call.

shmatshmid shmaddr shmflg
Theshmat(2) system call.

shmctlshmid command data
Theshmctl(2) system call.

signalfdfildes mask flags
Thesignalfd(2) system call.

sleepseconds
Thesleep(3) system call.

socketdomain type protocol
Thesocket(2) system call.

socketpairdomain type protocol sv
Thesocketpair(2) system call.

statpathname
Thestat(2) system call.

statfspathname data
Thestatfs(2) system call.

statvfspathname data
Thestatvfs(2) system call.

stimet Thestime(2) system call.

strcolls1 s2
Thestrcoll(3) system call.

strdupdata
Thestrdup(3) system call.

strerror The error given will be printed out with all known detail.

strndupdata data_size
Thestrndup(3) system call.

29

explain(1) explain(1)

strtodnptr endptr
Thestrtod(3) system call.

strtofnptr endptr
Thestrtof(3) system call.

strtol nptr endptr base
Thestrtol(3) system call.

strtoldnptr endptr
Thestrtold(3) system call.

strtoll nptr endptr base
Thestrtoll(3) system call.

strtoulnptr endptr base
Thestrtoul(3) system call.

strtoullnptr endptr base
Thestrtoull(3) system call.

symlink oldpath newpath
Thesymlink(2) system call.

systemcommand
Thesystem(3) system call.

tcdrainfildes
Thetcdrain(3) system call.

tcflow fildes action
Thetcflow(3) system call.

tcflushfildes selector
Thetcflush(3) system call.

tcgetattrfildes data
Thetcgetattr(3) system call.

tcsendbreakfildes duration
Thetcsendbreak(3) system call.

tcsetattrfildes options data
Thetcsetattr(3) system call.

telldir dir
Thetelldir(3) system call.

tempnamdir prefix
Thetempnam(3) system call.

time t Thetime(2) system call.

timerfd_createclockid flags
Thetimerfd_create(2) system call.

tmpfile Thetmpfile(3) system call.

tmpnampathname
Thetmpnam(3) system call.

truncatepathname size
Thetruncate(2) system call.

usleepusec
Theusleep(3) system call.

30

explain(1) explain(1)

unamedata
Theuname(2) system call.

ungetcc fp
Theungetc(3) system call.

unlink pathname
Theunlink(2) system call.

unsetenvname
Theunsetenv(3) system call.

ustatdev ubuf
Theustat(2) system call.

utimepathname[times]
Theutime(2) system call.

utimenspathname[data]
Theutimens(2) system call.

utimensat [fildes] pathname[data[flags]]
Theutimensat(2) system call.

utimespathname data
Theutimes(2) system call.

vasprintfdata format ap
Thevasprintf(3) system call.

vfork Thevfork(2) system call.

wait status
Thewait(2) system call.

wait3 status options rusage
Thewait3(2) system call.

wait4 pid status options rusage
Thewait4(2) system call.

waitpid pid status options
Thewaitpid(2) system call.

write fildes data data-size
Thewrite(2) system call.

writev fildes data data-size
Thewritev(2) system call.

Do not include the perentheses used to make the call.

OPTIONS
The explain command understands the following options:

−E The exit staus, success or fail, will be printed immediately before theaccesscommand
terminates.

−enumber
The value oferrnoas a number (e.g.2), or as a symbol (e.g.ENOENT), or as the text of its
meaning (e.g.No such file or directory). You will need quotes to insulate spaces and punctuation
from the shell.

−V Print the version of theexplain executing.

EXIT STATUS
The explain command exits with status 1 on any error. The explain command only exits with status 0 if
there are no errors.

31

explain(1) explain(1)

COPYRIGHT
explain version 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

32

explain_lca2010(1) explain_lca2010(1)

NAME
explain_lca2010 − No medium found: when it’s time to stop trying to readstrerror(3)’s mind.

MOTIV ATION
The idea for libexplain occurred to me back in the early 1980s. Whenever a system call returns an error,
the kernel knows exactly what went wrong... and compresses this into less that 8 bits oferrno. User space
has access to the same data as the kernel, it should be possible for user space to figure out exactly what
happened to provoke the error return, and use this to write good error messages.

Could it be that simple?

Error messages as finesse
Good error messages are often those “one percent” tasks that get dropped when schedule pressure squeezes
your project. However, a good error message can make a huge, disproportionate improvement to the user
experience, when the user wanders into scarey unknown territory not usually encountered. This is no easy
task.

As a larval programmer, the author didn’t see the problem with (completely accurate) error messages like
this one:

floating exception (core dumped)

until the alternative non-programmer interpretation was pointed out. But that isn’t the only thing wrong
with Unix error messages. How often do you see error messages like:

$./stupid
can’t open file
$

There are two options for a developer at this point:

1. you can run a debugger, such asgdb(1), or

2. you can usestrace(1) or truss(1) to look inside.

• Remember that your users may not even hav eaccess to these tools, let alone the ability to use them.
(It’s a very long time sinceUnix beginnermeant “has only writtenonedevice driver”.)

In this example, however, usingstrace(1) reveals

$ strace −e trace=open ./stupid
open("some/file", O_RDONLY) = −1 ENOENT (No such file or directory)
can’t open file
$

This is considerably more information than the error message provides. Typically, the stupid source code
looks like this

int fd = open(" some/thing", O_RDONLY);
if (fd < 0)
{

fprintf(stderr, "can’t open file\n");
exit(1);

}

The user isn’t told whichfi le, and also fails to tell the userwhicherror. Was the file even there? Was there
a permissions problem? It does tell you it was trying to open a file, but that was probably by accident.

Grab your clue stick and go beat the larval programmer with it.Tell him aboutperror(3). Thenext time
you use the program you see a different error message:

$./stupid
open: No such file or directory
$

Progress, but not what we expected. How can the user fix the problem if the error message doesn’t tell him

33

explain_lca2010(1) explain_lca2010(1)

what the problem was? Lookingat the source, we see

int fd = open(" some/thing", O_RDONLY);
if (fd < 0)
{

perror("open");
exit(1);

}

Time for another run with the clue stick. This time, the error message takes one step forward and one step
back:

$./stupid
some/thing: No s uch file or directory
$

Now we know the file it was trying to open, but are no longer informed that it wasopen(2) that failed. In
this case it is probably not significant, but it can be significant for other system calls. It could have been
creat(2) instead, an operation implying that different permissions are necessary.

const char *filename = " some/thing";
int fd = open(filename, O_RDONLY);
if (fd < 0)
{

perror(filename);
exit(1);

}

The above example code is unfortunately typical of non-larval programmers as well.Time to tell our
padawan learner about thestrerror(3) system call.

$./stupid
open some/thing: No s uch file or directory
$

This maximizes the information that can be presented to the user. The code looks like this:

const char *filename = " some/thing";
int fd = open(filename, O_RDONLY);
if (fd < 0)
{

fprintf(stderr, "open %s: %s\n", filename, strerror(errno));
exit(1);

}

Now we hav ethe system call, the filename, and the error string. This contains all the information that
strace(1) printed. That’s as good as it gets.

Or is it?

Limitations of perror and strerror
The problem the author saw, back in the 1980s, was that the error message is incomplete. Does “no such
fi le or directory” refer to the “some” directory, or to the “thing” f ile in the “some” directory?

A quick look at the man page forstrerror(3) is telling:

strerror − return string describing error number

Note well: it is describing the errornumber, not the error.

On the other hand, the kernelknowswhat the error was. Therewas a specific point in the kernel code,
caused by a specific condition, where the kernel code branched and said “no”. Could a user-space program
figure out the specific condition and write a better error message?

However, the problem goes deeper. What if the problem occurs during theread(2) system call, rather than
theopen(2) call? It is simple for the error message associated withopen(2) to include the file name, it’s

34

explain_lca2010(1) explain_lca2010(1)

right there. But to be able to include a file name in the error associated with theread(2) system call, you
have to pass the file name all the way down the call stack, as well as the file descriptor.

And here is the bit that grates: the kernel already knows what file name the file descriptor is associated
with. Why should a programmer have to pass redundant data all the way down the call stack just to
improve an error message that may never be issued? Inreality, many programmers don’t bother, and the
resulting error messages are the worse for it.

But that was the 1980s, on a PDP11, with limited resources and no shared libraries. Back then, no flavor of
Unix included/proc ev en in rudimentary form, and thelsof(1) program was over a decade away. So the
idea was shelved as impractical.

Level I nfinity Support
Imagine that you are level infinity support. Your job description says that you never ever have to talk to
users. Why, then, is there still a constant stream of people wanting you, the local Unix guru, to decipher yet
another error message?

Strangely, 25 years later, despite a simple permissions system, implemented with complete consistency,
most Unix users still have no idea how to decode “No such file or directory”, or any of the other cryptic
error messages they see every day. Or, at least, cryptic to them.

Wouldn’t it be nice if first level tech support didn’t need error messages deciphered?Wouldn’t it be nice to
have error messages that users could understand without calling tech support?

These days/proc on Linux is more than able to provide the information necessary to decode the vast
majority of error messages, and point the user to the proximate cause of their problem. On systems with a
limited /proc implementation, thelsof(1) command can fill in many of the gaps.

In 2008, the stream of translation requests happened to the author way too often. It was time to re-examine
that 25 year old idea, and libexplain is the result.

USING THE LIBRARY
The interface to the library tries to be consistent, where possible. Let’s start with an example using
strerror(3):

if (rename(old_path, new_path) < 0)
{

fprintf(stderr, "rename %s %s: %s\n", old_path, new_path,
strerror(errno));

exit(1);
}

The idea behind libexplain is to provide astrerror(3) equivalent foreachsystem call, tailored specifically
to that system call, so that it can provide a more detailed error message, containing much of the information
you see under the “ERRORS” heading of section 2 and 3manpages, supplemented with information about
actual conditions, actual argument values, and system limits.

The Simple Case
Thestrerror(3) replacement:

if (rename(old_path, new_path) < 0)
{

fprintf(stderr, "%s\n", explain_rename(old_path, new_path));
exit(1);

}

The Errno Case
It is also possible to pass an expliciterrno(3) value, if you must first do some processing that would disturb
errno, such as error recovery:

if (rename(old_path, new_path < 0))
{

int old_errno = errno;

35

explain_lca2010(1) explain_lca2010(1)

... code that disturbs errno...
fprintf(stderr, "%s\n", explain_errno_rename(old_errno,

old_path, new_path));
exit(1);

}

The Multi-thread Cases
Some applications are multi-threaded, and thus are unable to share libexplain’s internal buffer. You can
supply your own buffer using

if (unlink(pathname))
{

char message[3000];
explain_message_unlink(message, sizeof(message), pathname);
error_dialog(message);
return −1;

}

And for completeness, botherrno(3) and thread-safe:

ssize_t nbytes = read(fd, data, sizeof(data));
if (nbytes < 0)
{

char message[3000];
int old_errno = errno;
... error recovery...
explain_message_errno_read(message, sizeof(message),

old_errno, fd, data, sizeof(data));
error_dialog(message);
return −1;

}

These are replacements forstrerror_r(3), on systems that have it.

Interface Sugar
A set of functions added as convenience functions, to woo programmers to use the libexplain library, turn
out to be the author’s most commonly used libexplain functions in command line programs:

int fd = explain_creat_or_die(filename, 0666);

This function attempts to create a new file. If it can’t, it prints an error message and exits with
EXIT_FAILURE. If there is no error, it returns the new file descriptor.

A related function:

int fd = explain_creat_on_error(filename, 0666);

will print the error message on failure, but also returns the original error result, anderrno(3) is unmolested,
as well.

All the other system calls
In general, every system call has its own include file

#include <libexplain/ name.h>

that defines function prototypes for six functions:

• explain_ name,

• explain_errno_ name,

• explain_message_ name,

• explain_message_errno_ name,

36

explain_lca2010(1) explain_lca2010(1)

• explain_ name_or_die and

• explain_ name_on_error .

Every function prototype has Doxygen documentation, and this documentationis notstripped when the
include files are installed.

Thewait(2) system call (and friends) have some extra variants that also interpret failure to be an exit status
that isn’t EXIT_SUCCESS. Thisapplies tosystem(3) andpclose(3) as well.

Coverage includes 221 system calls and 547 ioctl requests. There are many more system calls yet to
implement. Systemcalls that never return, such asexit(2), are not present in the library, and will never be.
Theexecfamily of system callsaresupported, because they return when there is an error.

Cat
This is what a hypothetical “cat” program could look like, with full error reporting, using libexplain.

#include <libexplain/libexplain.h>
#include <stdlib.h>
#include <unistd.h>

There is one include for libexplain, plus the usual suspects. (If you wish to reduce the preprocessor load,
you can use the specific<libexplain/ name.h> includes.)

static void
process(FILE *fp)
{

for (;;)
{

char buffer[4096];
size_t n = explain_fread_or_die(buffer, 1, sizeof(buffer), fp);
if (!n)

break;
explain_fwrite_or_die(buffer, 1, n, stdout);

}
}

Theprocessfunction copies a file stream to the standard output. Should an error occur for either reading or
writing, it is reported (and the pathname will be included in the error) and the command exits with
EXIT_FAILURE. We don’t even worry about tracking the pathnames, or passing them down the call stack.

int
main(int argc, char **argv)
{

for (;;)
{

int c = getopt(argc, argv, "o:");
if (c == EOF)

break;
switch (c)
{
case ’o’:

explain_freopen_or_die(optarg, "w", stdout);
break;

The fun part of this code is that libexplain can report errorsincluding the pathnameev en if youdon’t
explicitly re-open stdout as is done here.We don’t even worry about tracking the file name.

default:
fprintf(stderr, "Usage: %ss [−o <filename>] <filename>...\n",

argv[0]);
return EXIT_FAILURE;

37

explain_lca2010(1) explain_lca2010(1)

}
}
if (optind == argc)

process(stdin);
else
{

while (optind < argc)
{

FILE *fp = explain_fopen_or_die(argv[optind]++, "r");
process(fp);
explain_fclose_or_die(fp);

}
}

The standard output will be closed implicitly, but too late for an error report to be issued, so we do that
here, just in case the buffered I/O hasn’t written anything yet, and there is an ENOSPC error or something.

explain_fflush_or_die(stdout);
return EXIT_SUCCESS;

}

That’s all. Full error reporting, clear code.

Rusty’s Scale of Interface Goodness
For those of you not familiar with it, Rusty Russel’s “How Do I Make This Hard to Misuse?” page is a
must-read for API designers.
http://ozlabs.org/˜rusty/index.cgi/tech/2008-03-30.html

10. It’s impossible to get wrong.

Goals need to be set high, ambitiously high, lest you accomplish them and think you are finished when you
are not.

The libexplain library detects bogus pointers and many other bogus system call parameters, and generally
tries to avoid segfaults in even the most trying circumstances.

The libexplain library is designed to be thread safe. More real-world use will likely reveal places this can
be improved.

The biggest problem is with the actual function names themselves. BecauseC does not have name-spaces,
the libexplain library always uses anexplain_ name prefix. This is the traditional way of creating a
pseudo-name-space in order to avoid symbol conflicts. However, it results in some unnatural-sounding
names.

9. The compiler or linker won’t let you get it wrong.

A common mistake is to useexplain_open whereexplain_open_or_die was intended.
Fortunately, the compiler will often issue a type error at this point (e.g.can’t assignconst char *
rvalue to anint lvalue).

8. The compiler will warn if you get it wrong.

If explain_rename is used whenexplain_rename_or_die was intended, this can cause other
problems. GCChas a usefulwarn_unused_result function attribute, and the libexplain library
attaches it to all theexplain_ namefunction calls to produce a warning when you make this mistake.
Combine this withgcc −Werrorto promote this to level 9 goodness.

7. The obvious use is (probably) the correct one.

The function names have been chosen to convey their meaning, but this is not always successful. While
explain_ name_or_die andexplain_ name_on_error are fairly descriptive, the less-used thread
safe variants are harder to decode. The function prototypes help the compiler towards understanding, and
the Doxygen comments in the header files help the user towards understanding.

38

explain_lca2010(1) explain_lca2010(1)

6. The name tells you how to use it.

It is particularly important to readexplain_ name_or_die as “explain (nameor die)”. Using a
consistentexplain_ name-space prefix has some unfortunate side-effects in the obviousness department,
as well.

The order of words in the names also indicate the order of the arguments. Theargument lists always end
with the same arguments as passed to the system call;all of them. If _errno_ appears in the name, its
argument always precedes the system call arguments. If_message_ appears in the name, its two
arguments always come first.

5. Do it right or it will break at runtime.

The libexplain library detects bogus pointers and many other bogus system call parameters, and generally
tries to avoid segfaults in even the most trying circumstances. It should never break at runtime, but more
real-world use will no doubt improve this.

Some error messages are aimed at developers and maintainers rather than end users, as this can assist with
bug resolution. Notso much “break at runtime” as “be informative at runtime” (after the system call barfs).

4. Follow common convention and you’ll get it right.

Because C does not have name-spaces, the libexplain library always uses anexplain_ name prefix. This
is the traditional way of creating a pseudo-name-space in order to avoid symbol conflicts.

The trailing arguments of all the libexplain call are identical to the system call they are describing. This is
intended to provide a consistent convention in common with the system calls themselves.

3. Read the documentation and you’ll get it right.

The libexplain library aims to have complete Doxygen documentation for each and every public API call
(and internally as well).

MESSAGE CONTENT
Working on libexplain is a bit like looking at the underside of your car when it is up on the hoist at the
mechanic’s. There’s some ugly stuff under there, plus mud and crud, and users rarely see it.A good error
message needs to be informative, even for a user who has been fortunate enough not to have to look at the
under-side very often, and also informative for the mechanic listening to the user’s description over the
phone. Thisis no easy task.

Revisiting our first example, the code would like this if it uses libexplain:

int fd = explain_open_or_die("some/thing", O_RDONLY, 0);

will fail with an error message like this

open(pathname = "some/file", flags = O_RDONLY) failed, No such
file or directory (2, ENOENT) because there is no "some" directory
in the current directory

This breaks down into three pieces

system-call failed, system-errorbecause
explanation

Before Because
It is possible to see the part of the message before “because” as overly technical to non-technical users,
mostly as a result of accurately printing the system call itself at the beginning of the error message. And it
looks likestrace(1) output, for bonus geek points.

open(pathname = "some/file", flags = O_RDONLY) failed, No such
file or directory (2, ENOENT)

This part of the error message is essential to the developer when he is writing the code, and equally
important to the maintainer who has to read bug reports and fix bugs in the code. It says exactly what
failed.

39

explain_lca2010(1) explain_lca2010(1)

If this text is not presented to the user then the user cannot copy-and-paste it into a bug report, and if it isn’t
in the bug report the maintainer can’t know what actually went wrong.

Frequently tech staff will usestrace(1) or truss(1) to get this exact information, but this avenue is not open
when reading bug reports. The bug reporter’s system is far far away, and, by now, in a far different state.
Thus, this information needs to be in the bug report, which means it must be in the error message.

The system call representation also gives context to the rest of the message. If need arises, the offending
system call argument may be referred to by name in the explanation after “because”. In addition, all strings
are fully quoted and escaped C strings, so embedded newlines and non-printing characters will not cause
the user’s terminal to go haywire.

Thesystem-erroris what comes out ofstrerror(2), plus the error symbol. Impatient and expert sysadmins
could stop reading at this point, but the author’s experience to date is that reading further is rewarding. (If
it isn’t rew arding, it’s probably an area of libexplain that can be improved. Codecontributions are
welcome, of course.)

After Because
This is the portion of the error message aimed at non-technical users. It looks beyond the simple system
call arguments, and looks for something more specific.

there is no "some" directory in the current directory

This portion attempts to explain the proximal cause of the error in plain language, and it is here that
internationalization is essential.

In general, the policy is to include as much information as possible, so that the user doesn’t need to go
looking for it (and doesn’t leave it out of the bug report).

Internationalization
Most of the error messages in the libexplain library have been internationalized. There are no localizations
as yet, so if you want the explanations in your native language, please contribute.

The “most of” qualifier, above, relates to the fact that the proof-of-concept implementation did not include
internationalization support. The code base is being revised progressively, usually as a result of refactoring
messages so that each error message string appears in the code exactly once.

Provision has been made for languages that need to assemble the portions of

system-call failed, system-errorbecause explanation

in different orders for correct grammar in localized error messages.

Postmortem
There are times when a program has yet to use libexplain, and you can’t usestrace(1) either. There is an
explain(1) command included with libexplain that can be used to decipher error messages, if the state of the
underlying system hasn’t changed too much.

$ explain rename foo /tmp/bar/baz −e ENOENT
rename(oldpath = "foo", newpath = "/tmp/bar/baz") failed, No such
file or directory (2, ENOENT) because there is no "bar" directory
in the newpath "/tmp" directory
$

Note how the path ambiguity is resolved by using the system call argument name. Of course, you have to
know the error and the system call forexplain(1) to be useful. As an aside, this is one of the ways used by
the libexplain automatic test suite to verify that libexplain is working.

Philosophy
“Tell me everything, including stuff I didn’t know to look for.”

The library is implemented in such a way that when statically linked, only the code you actually use will be
linked. Thisis achieved by having one function per source file, whenever feasible.

When it is possible to supply more information, libexplain will do so. The less the user has to track down
for themselves, the better. This means that UIDs are accompanied by the user name, GIDs are

40

explain_lca2010(1) explain_lca2010(1)

accompanied by the group name, PIDs are accompanied by the process name, file descriptors and streams
are accompanied by the pathname,etc.

When resolving paths, if a path component does not exist, libexplain will look for similar names, in order to
suggest alternatives for typographical errors.

The libexplain library tries to use as little heap as possible, and usually none. This is to avoid perturbing
the process state, as far as possible, although sometimes it is unavoidable.

The libexplain library attempts to be thread safe, by avoiding global variables, keeping state on the stack as
much as possible. There is a single common message buffer, and the functions that use it are documented
as not being thread safe.

The libexplain library does not disturb a process’s signal handlers. This makes determining whether a
pointer would segfault a challenge, but not impossible.

When information is available via a system call as well as available through a/proc entry, the system call
is preferred. This is to avoid disturbing the process’s state. Thereare also times when no file descriptors
are available.

The libexplain library is compiled with large file support. There is no large/small schizophrenia. Where
this affects the argument types in the API, and error will be issued if the necessary large file defines are
absent.

FIXME: Work is needed to make sure that file system quotas are handled in the code. This applies to some
getrlimit (2) boundaries, as well.

There are cases when relatives paths are uninformative. For example: system daemons, servers and
background processes. In these cases, absolute paths are used in the error explanations.

PATH RESOLUTION
Short version: seepath_resolution(7).

Long version: Most users have nev er heard ofpath_resolution(7), and many advanced users have nev er read
it. Hereis an annotated version:

Step 1: Start of the resolution process
If the pathname starts with the slash (“/”) character, the starting lookup directory is the root directory of the
calling process.

If the pathname does not start with the slash(“/”) character, the starting lookup directory of the resolution
process is the current working directory of the process.

Step 2: Walk along the path
Set the current lookup directory to the starting lookup directory. Now, for each non-final component of the
pathname, where a component is a substring delimited by slash (“/”) characters, this component is looked
up in the current lookup directory.

If the process does not have search permission on the current lookup directory, an EACCES error is
returned ("Permission denied").

open(pathname = "/home/archives/.ssh/private_key", flags =
O_RDONLY) failed, Permission denied (13, EACCES) because the
process does not have search permission to the pathname
"/home/archives/.ssh" directory, the process effective GID 1000
"pmiller" does not match the directory owner 1001 "archives" so
the owner permission mode "rwx" is ignored, the others permission
mode is "−−−", and the process is not privileged (does not have
the DAC_READ_SEARCH capability)

If the component is not found, an ENOENT error is returned ("No such file or directory").

unlink(pathname = "/home/microsoft/rubbish") failed, No such file
or directory (2, ENOENT) because there is no "microsoft" directory
in the pathname "/home" directory

41

explain_lca2010(1) explain_lca2010(1)

There is also some support for users when they mis-type pathnames, making suggestions when ENOENT is
returned:

open(pathname = "/user/include/fcntl.h", flags = O_RDONLY) failed,
No such file or directory (2, ENOENT) because there is no "user"
directory in the pathname "/" directory, did you mean the "usr"
directory instead?

If the component isfound, but is neither a directory nor a symbolic link, an ENOTDIR error is returned
("Not a directory").

open(pathname = "/home/pmiller/.netrc/lca", flags = O_RDONLY)
failed, Not a directory (20, ENOTDIR) because the ".netrc" regular
file in the pathname "/home/pmiller" directory is being used as a
directory when it is not

If the component is found and is a directory, we set the current lookup directory to that directory, and go to
the next component.

If the component is found and is a symbolic link (symlink), we first resolve this symbolic link (with the
current lookup directory as starting lookup directory). Upon error, that error is returned. If the result is not
a directory, an ENOTDIR error is returned.

unlink(pathname = "/tmp/dangling/rubbish") failed, No such file or
directory (2, ENOENT) because the "dangling" symbolic link in the
pathname "/tmp" directory refers to "nowhere" that does not exist

If the resolution of the symlink is successful and returns a directory, we set the current lookup directory to
that directory, and go to the next component. Note that the resolution process here involves recursion. In
order to protect the kernel against stack overflow, and also to protect against denial of service, there are
limits on the maximum recursion depth, and on the maximum number of symbolic links followed. An
ELOOP error is returned when the maximum is exceeded ("Too many lev els of symbolic links").

open(pathname = "/tmp/dangling", flags = O_RDONLY) failed, Too
many levels of symbolic links (40, ELOOP) because a symbolic link
loop was encountered in pathname, starting at "/tmp/dangling"

It is also possible to get an ELOOP or EMLINK error if there are too many symlinks, but no loop was
detected.

open(pathname = "/tmp/rabbit-hole", flags = O_RDONLY) failed, Too
many levels of symbolic links (40, ELOOP) because too many
symbolic links were encountered in pathname (8)

Notice how the actual limit is also printed.

Step 3: Find the final entry
The lookup of the final component of the pathname goes just like that of all other components, as described
in the previous step, with two differences:

(i) The final component need not be a directory (at least as far as the path resolution process is concerned.
It may have to be a directory, or a non-directory, because of the requirements of the specific system
call).

(ii) It is not necessarily an error if the final component is not found; maybe we are just creating it. The
details on the treatment of the final entry are described in the manual pages of the specific system
calls.

(iii) It is also possible to have a problem with the last component if it is a symbolic link and it should not
be followed. For example, using theopen(2) O_NOFOLLOW flag:

open(pathname = "a-symlink", flags = O_RDONLY | O_NOFOLLOW) failed,
Too many levels of symbolic links (ELOOP) because O_NOFOLLOW was
specified but pathname refers to a symbolic link

42

explain_lca2010(1) explain_lca2010(1)

(iv) It is common for users to make mistakes when typing pathnames. The libexplain library attempts to
make suggestions when ENOENT is returned, for example:

open(pathname = "/usr/include/filecontrl.h", flags = O_RDONLY)
failed, No such file or directory (2, ENOENT) because there is no
"filecontrl.h" regular file in the pathname "/usr/include"
directory, did you mean the "fcntl.h" regular file instead?

(v) It is also possible that the final component is required to be something other than a regular file:

readlink(pathname = "just-a-file", data = 0x7F930A50, data_size =
4097) failed, Invalid argument (22, EINVAL) because pathname is a
regular file, not a symbolic link

(vi) FIXME: handling of the "t" bit.

Limits
There are a number of limits with regards to pathnames and filenames.

Pathname length limit
There is a maximum length for pathnames. If the pathname (or some intermediate pathname
obtained while resolving symbolic links) is too long, an ENAMETOOLONG error is returned
("File name too long"). Notice how the system limit is included in the error message.

open(pathname = " very...long", flags = O_RDONLY) failed, File name
too long (36, ENAMETOOLONG) because pathname exceeds the system
maximum path length (4096)

Filename length limit
Some Unix variants have a limit on the number of bytes in each path component. Some of them
deal with this silently, and some give ENAMETOOLONG; the libexplain library usespathconf(3)
_PC_NO_TRUNC to tell which. If this error happens, the libexplain library will state the limit in
the error message, the limit is obtained frompathconf(3) _PC_NAME_MAX. Notice how the
system limit is included in the error message.

open(pathname = " system7/only−had−14−characters", flags = O_RDONLY)
failed, File name too long (36, ENAMETOOLONG) because
"only−had−14−characters" component is longer than the system
limit (14)

Empty pathname
In the original Unix, the empty pathname referred to the current directory. Now adays POSIX
decrees that an empty pathname must not be resolved successfully.

open(pathname = "", flags = O_RDONLY) failed, No such file or
directory (2, ENOENT) because POSIX decrees that an empty
pathname must not be resolved successfully

Permissions
The permission bits of a file consist of three groups of three bits. The first group of three is used when the
effective user ID of the calling process equals the owner ID of the file. Thesecond group of three is used
when the group ID of the file either equals the effective group ID of the calling process, or is one of the
supplementary group IDs of the calling process. When neither holds, the third group is used.

open(pathname = "/etc/passwd", flags = O_WRONLY) failed,
Permission denied (13, EACCES) because the process does not have
write permission to the "passwd" regular file in the pathname
"/etc" directory, the process effective UID 1000 "pmiller" does
not match the regular file owner 0 "root" so the owner permission
mode "rw−" is ignored, the others permission mode is "r−−", and
the process is not privileged (does not have the DAC_OVERRIDE

43

explain_lca2010(1) explain_lca2010(1)

capability)

Some considerable space is given to this explanation, as most users do not know that this is how the
permissions system works. Inparticular: the owner, group and other permissions are exclusive, they are not
“OR”ed together.

STRANGE AND INTERESTING SYSTEM CALLS
The process of writing a specific error handler for each system call often reveals interesting quirks and
boundary conditions, or obscureerrno(3) values.

ENOMEDIUM, No medium found
The act of copying a CD was the source of the title for this paper.

$ dd if=/dev/cdrom of=fubar.iso
dd: opening “/dev/cdrom”: No medium found
$

The author wondered why his computer was telling him there is no such thing as a psychic medium. Quite
apart from the fact that huge numbers of native English speakers are not even aware that “media” is a
plural, let alone that “medium” is its singular, the string returned bystrerror(3) for ENOMEDIUM is so
terse as to be almost completely free of content.

Whenopen(2) returns ENOMEDIUM it would be nice if the libexplain library could expand a little on this,
based on the type of drive it is. For example:

... because there is no disk in the floppy drive

... because there is no disc in the CD-ROM drive

... because there is no tape in the tape drive

... because there is no memory stick in the card reader

And so it came to pass...

open(pathname = "/dev/cdrom", flags = O_RDONLY) failed, No medium
found (123, ENOMEDIUM) because there does not appear to be a disc
in the CD-ROM drive

The trick, that the author was previously unaware of, was to open the device using the O_NONBLOCK
flag, which will allow you to open a drive with no medium in it.You then issue device specificioctl(2)
requests until you figure out what the heck it is. (Not sure if this is POSIX, but it also seems to work that
way in BSD and Solaris, according to thewodim(1) sources.)

Note also the differing uses of “disk” and “disc” in context. TheCD standard originated in France, but
ev erything else has a “k”.

EFAULT , Bad address
Any system call that takes a pointer argument can return EFAULT . The libexplain library can figure out
which argument is at fault, and it does it without disturbing the process (or thread) signal handling.

When available, themincore(2) system call is used, to ask if the memory region is valid. It can return three
results: mapped but not in physical memory, mapped and in physical memory, and not mapped. When
testing the validity of a pointer, the first two are “yes” and the last one is “no”.

Checking C strings are more difficult, because instead of a pointer and a size, we only have a pointer. To
determine the size we would have to find the NUL, and that could segfault, catch-22.

To work around this, the libexplain library uses thelstat(2) sysem call (with a known good second
argument) to test C strings for validity. A failure return && errno == EFAULT is a “no”, and anythng else
is a “yes”. This, of course limits strings to PATH_MAX characters, but that usually isn’t a problem for the
libexplain library, because that is almost always the longest strings it cares about.

EMFILE, Too many open files
This error occurs when a process already has the maximum number of file descriptors open. If the actual
limit is to be printed, and the libexplain library tries to, you can’t open a file in/proc to read what it is.

open_max = sysconf(_SC_OPEN_MAX);

44

explain_lca2010(1) explain_lca2010(1)

This one wan’t so difficult, there is asysconf(3) way of obtaining the limit.

ENFILE, Too many open files in system
This error occurs when the system limit on the total number of open files has been reached. In this case
there is no handysysconf(3) way of obtain the limit.

Digging deeper, one may discover that on Linux there is a/proc entry we could read to obtain this value.
Catch-22: we are out of file descriptors, so we can’t open a file to read the limit.

On Linux there is a system call to obtain it, but it has no [e]glibc wrapper function, so you have to all it
very carefully:

long
explain_maxfile(void)
{
#ifdef __linux__

struct __sysctl_args args;
int32_t maxfile;
size_t maxfile_size = sizeof(maxfile);
int name[] = { CTL_FS, FS_MAXFILE };
memset(&args, 0, sizeof(struct __sysctl_args));
args.name = name;
args.nlen = 2;
args.oldval = &maxfile;
args.oldlenp = &maxfile_size;
if (syscall(SYS__sysctl, &args) >= 0)

return maxfile;
#endif

return −1;
}

This permits the limit to be included in the error message, when available.

EINVAL “In valid argument” vsENOSYS “Function not implemented”
Unsupported actions (such assymlink(2) on a FAT file system) are not reported consistently from one
system call to the next. It is possible to have either EINVAL or ENOSYS returned.

As a result, attention must be paid to these error cases to get them right, particularly as the EINVAL could
also be referring to problems with one or more system call arguments.

Note that errno(3) is not always set
There are times when it is necessary to read the [e]glibc sources to determine how and when errors are
returned for some system calls.

feof(3), fileno(3)
It is often assumed that these functions cannot return an error. This is only true if thestreamargument
is valid, however they are capable of detecting an invalid pointer.

fpathconf(3), pathconf(3)
The return value offpathconf(2) andpathconf(2) could legitimately be −1, so it is necessary to see if
errno(3) has been explicitly set.

ioctl(2)
The return value ofioctl(2) could legitimately be −1, so it is necessary to see iferrno(3) has been
explicitly set.

readdir(3)
The return value ofreaddir(3) is NULL for both errors and end-of-file. It is necessary to see if
errno(3) has been explicitly set.

45

explain_lca2010(1) explain_lca2010(1)

setbuf(3), setbuffer(3), setlinebuf(3), setvbuf(3)
All but the last of these functions return void. Andsetvbuf(3) is only documented as returning “non-
zero” on error. It is necessary to see iferrno(3) has been explicitly set.

strtod(3), strtol(3), strtold(3), strtoll(3), strtoul(3), strtoull(3)
These functions return 0 on error, but that is also a legitimate return value. Itis necessary to see if
errno(3) has been explicitly set.

ungetc(3)
While only a single character of backup is mandated by the ANSI C standard, it turns out that [e]glibc
permits more...but that means it can fail with ENOMEM. It can also fail with EBADF iffp is bogus.
Most difficult of all, if you pass EOF an error return occurs, but errno is not set.

The libexplain library detects all of these errors correctly, even in cases where the error values are poorly
documented, if at all.

ENOSPC, No space left on device
When this error refers to a file on a file system, the libexplain library prints the mount point of the file
system with the problem. This can make the source of the error much clearer.

write(fildes = 1 "example", data = 0xbfff2340, data_size = 5)
failed, No space left on device (28, ENOSPC) because the file
system containing fildes ("/home") has no more space for data

As more special device support is added, error messages are expected to include the device name and actual
size of the device.

EROFS, Read-only file system
When this error refers to a file on a file system, the libexplain library prints the mount point of the file
system with the problem. This can make the source of the error much clearer.

As more special device support is added, error messages are expected to include the device name and type.

open(pathname = "/dev/fd0", O_RDWR, 0666) failed, Read-only file
system (30, EROFS) because the floppy disk has the write protect
tab set

...because a CD-ROM is not writable

...because the memory card has the write protect tab set

...because the ½ inch magnetic tape does not have a write ring

rename
Therename(2) system call is used to change the location or name of a file, moving it between directories if
required. Ifthe destination pathname already exists it will be atomically replaced, so that there is no point
at which another process attempting to access it will find it missing.

There are limitations, however: you can only rename a directory on top of another directory if the
destination directory is not empty.

rename(oldpath = "foo", newpath = "bar") failed, Directory not
empty (39, ENOTEMPTY) because newpath is not an empty directory;
that is, it contains entries other than "." and ".."

You can’t rename a directory on top of a non-directory, either.

rename(oldpath = "foo", newpath = "bar") failed, Not a directory
(20, ENOTDIR) because oldpath is a directory, but newpath is a
regular file, not a directory

Nor is the reverse allowed

rename(oldpath = "foo", newpath = "bar") failed, Is a directory
(21, EISDIR) because newpath is a directory, but oldpath is a
regular file, not a directory

46

explain_lca2010(1) explain_lca2010(1)

This, of course, makes the libexplain library’s job more complicated, because theunlink(2) or rmdir(2)
system call is called implicitly byrename(2), and so all of theunlink(2) or rmdir(2) errors must be detected
and handled, as well.

dup2
Thedup2(2) system call is used to create a second file descriptor that references the same object as the first
fi le descriptor. Typically this is used to implement shell input and output redirection.

The fun thing is that, just asrename(2) can atomically rename a file on top of an existing file and remove
the old file,dup2(2) can do this onto an already-open file descriptor.

Once again, this makes the libexplain library’s job more complicated, because theclose(2) system call is
called implicitly bydup2(2), and so all ofclose(2)’s errors must be detected and handled, as well.

ADVENTURES IN IOCTL SUPPORT
The ioctl(2) system call provides device driver authors with a way to communicate with user-space that
doesn’t fit within the existing kernel API. Seeioctl_list(2).

Decoding Request Numbers
From a cursory look at theioctl(2) interface, there would appear to be a large but finite number of possible
ioctl(2) requests. Each differentioctl(2) request is effectively another system call, but without any type-
safety at all − the compiler can’t help a programmer get these right. This was probably the motivation
behindtcflush(3) and friends.

The initial impression is that you could decodeioctl(2) requests using a huge switch statement. This turns
out to be infeasible because one very rapidly discovers that it is impossible to include all of the necessary
system headers defining the variousioctl(2) requests, because they hav ea hard time playing nicely with
each other.

A deeper look reveals that there is a range of “private” request numbers, and device driver authors are
encouraged to use them. This means that there is a far larger possible set of requests, with ambiguous
request numbers, than are immediately apparent. Also, there are some historical ambiguities as well.

We already knew that the switch was impractical, but now we know that to select the appropriate request
name and explanation we must consider not only the request number but also the file descriptor.

The implementation ofioctl(2) support within the libexplain library is to have a table of pointers toioctl(2)
request descriptors. Each of these descriptors includes an optional pointer to a disambiguation function.

Each request is actually implemented in a separate source file, so that the necessary include files are
relieved of the obligation to play nicely with others.

Representation
The philosophy behind the libexplain library is to provide as much information as possible, including an
accurate representation of the system call. In the case ofioctl(2) this means printing the correct request
number (by name) and also a correct (or at least useful) representation of the third argument.

The ioctl(2) prototype looks like this:

int ioctl(int fildes, int request, ...);

which should have your type-safety alarms going off. Internalto [e]glibc, this is turned into a variety of
forms:

int __ioctl(int fildes, int request, long arg);
int __ioctl(int fildes, int request, void *arg);

and the Linux kernel syscall interface expects

asmlinkage long sys_ioctl(unsigned int fildes, unsigned int
request, unsigned long arg);

The extreme variability of the third argument is a challenge, when the libexplain library tries to print a
representation of that third argument. However, once the request number has been disambiguated, each
entry in the the libexplain library’s ioctl table has a customprint_data function (OO done manually).

47

explain_lca2010(1) explain_lca2010(1)

Explanations
There are fewer problems determining the explanation to be used. Once the request number has been
disambiguated, each entry in the libexplain library’s ioctl table has a customprint_explanation
function (again, OO done manually).

Unlike section 2 and section 3 system calls, mostioctl(2) requests have no errors documented. This means,
to give good error descriptions, it is necessary to read kernel sources to discover

• whaterrno(3) values may be returned, and

• the cause of each error.

Because of the OO nature of function call dispatching withing the kernel, you need to readall sources
implementing thatioctl(2) request, not just the generic implementation. It is to be expected that different
kernels will have different error numbers and subtly different error causes.

EINVAL vsENOTTY
The situation is even worse forioctl(2) requests than for system calls, with EINVAL and ENOTTY both
being used to indicate that anioctl(2) request is inappropriate in that context, and occasionally ENOSYS,
ENOTSUP and EOPNOTSUPP (meant to be used for sockets) as well. There are comments in the Linux
kernel sources that seem to indicate a progressive cleanup is in progress.For extra chaos, BSD adds
ENOIOCTL to the confusion.

As a result, attention must be paid to these error cases to get them right, particularly as the EINVAL could
also be referring to problems with one or more system call arguments.

intptr_t
The C99 standard defines an integer type that is guaranteed to be able to hold any pointer without
representation loss.

The above function syscall prototype would be better written

long sys_ioctl(unsigned int fildes, unsigned int request, intptr_t
arg);

The problem is the cognitive dissonance induced by device-specific or file-system-specificioctl(2)
implementations, such as:

long vfs_ioctl(struct file *filp, unsigned int cmd, unsigned long
arg);

The majority ofioctl(2) requests actually have an int *arg third argument. Buthaving it declaredlong
leads to code treating this aslong *arg . This is harmless on 32-bits (sizeof(long) ==
sizeof(int)) but nasty on 64-bits (sizeof(long) != sizeof(int)). Dependingon the
endian-ness, you do or don’t get the value you expect, but youalwaysget a memory scribble or stack
scribble as well.

Writing all of these as

int ioctl(int fildes, int request, ...);
int __ioctl(int fildes, int request, intptr_t arg);
long sys_ioctl(unsigned int fildes, unsigned int request, intptr_t
arg);
long vfs_ioctl(struct file *filp, unsigned int cmd, intptr_t arg);

emphasizes that the integer is only an integer to represent a quantity that is almost always an unrelated
pointer type.

CONCLUSION
Use libexplain, your users will like it.

COPYRIGHT
libexplain version 1.4
Copyright © 2008, 2009, 2010, 2011, 2012, 2013, 2014 Peter Miller

48

explain_lca2010(1) explain_lca2010(1)

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

49

GPL(1) FreeSoftware Foundation GPL(1)

NAME
GPL - GNU General Public License

DESCRIPTION
GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. Bycontrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program -- to make sure it remains free software for all its users.We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to any other work released this way by its authors.You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you received. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. Thesystematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

GNU GPL 50

GPL(1) FreeSoftware Foundation GPL(1)

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees”and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “ covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “ Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement a
Standard Interface for which an implementation is available to the public in source code form.A “ Major
Component”, in this context, means a major essential component (kernel, window system, and so on) of the
specific operating system (if any) on which the executable work runs, or a compiler used to produce the
work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose tools
or generally available free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow
between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GNU GPL 51

GPL(1) FreeSoftware Foundation GPL(1)

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affi rms your unlimited
permission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. ThisLicense acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force.You may convey covered works to others for the sole purpose of
having them make modifications exclusively for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Thosethus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any leg al power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or modification of the work as a means
of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply to
the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all
notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to
the whole of the work, and all its parts, regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not invalidate such permission if you have
separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if
the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need
not make them do so.

GNU GPL 52

GPL(1) FreeSoftware Foundation GPL(1)

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its
resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to
apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer
equivalent access to the Corresponding Source in the same way through the same place at no further
charge. You need not require recipients to copy the Corresponding Source along with the object code.
If the place to copy the object code is a network server, the Corresponding Source may be on a
different server (operated by you or a third party) that supports equivalent copying facilities, provided
you maintain clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the
object code and Corresponding Source of the work are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a
System Library, need not be included in conveying the object code work.

A “ User Product” is either (1) a “consumer product”, which means any tangible personal property which is
normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved in favor of coverage. For a particular product received by a particular user, “normally
used” refers to a typical or common use of that class of product, regardless of the status of the particular
user or of the way in which the particular user actually uses, or expects or is expected to use, the product.
A product is a consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other
information required to install and execute modified versions of a covered work in that User Product from a
modified version of its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product,

GNU GPL 53

GPL(1) FreeSoftware Foundation GPL(1)

and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is
characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains the
ability to install modified object code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide
support service, warranty, or updates for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a network may be denied when the
modification itself materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be
in a format that is publicly documented (and with an implementation available to the public in source code
form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“A dditional permissions” are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable law.
If additional permissions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own removal
in certain cases when you modify the work.) You may place additional permissions on material, added by
you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if
authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in
the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such
material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service
marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed
by this License along with a term that is a further restriction, you may remove that term. If a license
document contains a further restriction but permits relicensing or conveying under this License, you may
add to a covered work material governed by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files,
a statement of the additional terms that apply to those files, or a notice indicating where to find the
applicable terms.

GNU GPL 54

GPL(1) FreeSoftware Foundation GPL(1)

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license,
or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this
License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is
reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable
means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder
notifies you of the violation by some reasonable means, this is the first time you have received notice of
violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received
copies or rights from you under this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. Theseactions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this
License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License.You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. Ifpropagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affi rmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing

GNU GPL 55

GPL(1) FreeSoftware Foundation GPL(1)

the Program or any portion of it.

11. Patents.

A “ contributor” is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this
License, of making, using, or selling its contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s
essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to
sue for patent infringement).To “grant” such a patent license to a party means to make such an agreement
or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the
work is not available for anyone to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License,
to extend the patent license to downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s
use of the covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work,
then the patent license you grant is automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License.You may not convey a covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under which you make payment to the third party
based on the extent of your activity of conveying the work, and under which the third party grants, to any of
the parties who would receive the covered work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless you entered
into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to

GNU GPL 56

GPL(1) FreeSoftware Foundation GPL(1)

infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying from those to whom you convey the
Program, the only way you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered
work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. Theterms of this License will continue to apply to the
part which is the covered work, but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published by the
Free Software Foundation. Ifthe Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License
can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose
that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations
are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULDTHE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DAT A BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

GNU GPL 57

GPL(1) FreeSoftware Foundation GPL(1)

SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect
according to their terms, reviewing courts shall apply local law that most closely approximates an absolute
waiv er of all civil liability in connection with the Program, unless a warranty or assumption of liability
accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
fi le to most effectively state the exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C)year name of author

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. Seethe GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type “show w”. This is free
software, and you are welcome to redistribute it under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the General
Public License. Of course, your program’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright
disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the
GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Lesser General Public License
instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>.

GNU GPL 58

libexplain(3) libexplain(3)

NAME
libexplain − Explain errno values returned by libc functions

SYNOPSIS
cc ... −lexplain;

#include <libexplain/libexplain.h>

DESCRIPTION
The libexplain library exists to give explanations of error reported by system calls. The error message
returned bystrerror(3) tend to be quite cryptic. By providing a specific error report for each system call, a
more detailed error message is possible, usually identifying and describing the specific cause from amongst
the numerous meanings eacherrnovalue maps to.

Race Condition
The explanation of the cause of an error is dependent on the environment of the error to remain unchanged,
so that when libexplain gets around to looking for the cause, the cause is still there. On a running system,
and particularly a multi-user system, this is not always possible.

If an incorrect explanation is provided, it is possible that the cause is no longer present.

Compiling
Assuming the library header files has been installed into/usr/include , and the library files have been
installed into/usr/lib , compiling against libexplain requires no special−I options.

When linking your pograms, add−lexplain to the list of libraries at the end of your link line.
cc ... −lexplain

When you configure your package with GNU Autoconf, you need the large file support macro
AC_SYS_LARGEFILE

If you aren’t using GNU Autoconf, you will have to work out the needed large file support requirements
yourdelf.

There is apkg-config(1) package for you to use, too:
CFLAGS="$CFLAGS ‘pkg−config libexplain −−cflags‘" LIBS="$LIBS ‘pkg−config libexplain
−−libs‘"

This can make figuring out the command line requirements much easier.

Environment Variable
TheEXPLAIN_OPTIONSenvironment variable may be used to control some of the content in the
messages. Optionsare separated by comma (“,”) characters.

There are three ways to set an option:

1. The form “name=value” may be used explicitly. The values “true” and “false” are used for boolean
options.

2. An option name alone is interpreted to mean “name=true”.

3. The form “no-name” is interpreted to mean “name=false”.

The following options are available:

debug Additional debugging messages for libexplain developers. Notgenerally useful to clients of the
library.
Default: false.

extra-device-info
Additional information for block and character special devices is printed when naming a file and
its type.
Default: true

59

libexplain(3) libexplain(3)

numeric-errno
This option includes the numericerrnovalue in the message,e.g.“(2, ENOENT)” rather than
“(ENOENT)”. Disablingthis option is generally of use in automated testing, to prevent UNIX
dialect differences from producing false negatives.
Default: true

dialect-specific
This controls the presence of explanatory text specific to a particular UNIX dialect. It also
suppresses printing system specific maximums. Disabling this option is generally of use in
automated testing, to prevent UNIX dialect differences from producing false negatives.
Default: true.

hanging-indent
This controls the hanging indent depth used for error message wrapping. By default no hanging
indent is used, but this can sometimes obfuscate the end of one error message and the beginning
of another. A hanging indent results in continuation lines starting with white spoace, similar to
RFC822 headers.A value of 0 means no hanging indent (all lines flush with left margin). A
common value to use is 4: it doesn’t consume to much of each line, and it is a clear indent. The
program may choose to override the environment variable using the
explain_option_hanging_indent_set(3) function. The hanging indent is limited to 10% of the
terminal width.
Default: 0

internal-strerror
This option controls the source of system eror message texts. If false, it usesstrerorP(3) for the
text. If true, it uses internal string for the text. Thisis mostly of use for automated testing, to
avoid false negatives induced by inconsistencies across Unix implementations.
Default: false.

program-name
This option controls the inclusion of the program name at the start of error messages, by the
explain_*_or_die and explain_*_on_error functions. This helps users understand which
command is throwing the error. Disabling this option may be of some interest to script writers.
Program developers can use theexplain_program_name_set(3) function to set the name of the
command, if they wish to override the name that libexplain would otherwise obtain from the
operating system. Program developers can use theexplain_program_name_assemble(3) function
to trump this option.
Default: true.

symbolic-mode-bits
This option controls how permission mode bits are represented in error messages. Setting this
option to true will cause symbolic names to be printed (e.g.S_IRUSR | S_IWUSR | S_IRGRP |
S_IROTH). Settingthis option to false will cause octal values to be printed (e.g.0644).
Default: false.

Supported System Calls
Each supported system call has its ownmanpage.

explain_accept(3)
Explainaccept(2) errors

explain_accept_or_die(3)
accept a connection on a socket and report errors

explain_accept4(3)
Explainaccept4(2) errors

explain_accept4_or_die(3)
accept a connection on a socket and report errors

60

libexplain(3) libexplain(3)

explain_access(3)
Explainaccess(2) errors

explain_access_or_die(3)
check permissions for a file and report errors

explain_acct(3)
Explainacct(2) errors

explain_acct_or_die(3)
process accounting control and report errors

explain_acl_from_text(3)
Explainacl_from_text(3) errors

explain_acl_from_text_or_die(3)
create an ACL from text and report errors

explain_acl_get_fd(3)
Explainacl_get_fd(3) errors

explain_acl_get_fd_or_die(3)
Executeacl_get_fd(3) and report errors

explain_acl_get_file(3)
Explainacl_get_file(3) errors

explain_acl_get_file_or_die(3)
Executeacl_get_file(3) and report errors

explain_acl_set_fd(3)
Explainacl_set_fd(3) errors

explain_acl_set_fd_or_die(3)
set an ACL by file descriptor and report errors

explain_acl_set_file(3)
Explainacl_set_file(3) errors

explain_acl_set_file_or_die(3)
set an ACL by filename and report errors

explain_acl_to_text(3)
Explainacl_to_text(3) errors

explain_acl_to_text_or_die(3)
convert an ACL to text and report errors

explain_adjtime(3)
Explainadjtime(2) errors

explain_adjtime_or_die(3)
smoothly tune kernel clock and report errors

explain_adjtimex(3)
Explainadjtimex(2) errors

explain_adjtimex_or_die(3)
tune kernel clock and report errors

explain_asprintf(3)
Explainasprintf(3) errors

explain_asprintf_or_die(3)
print to allocated string and report errors

61

libexplain(3) libexplain(3)

explain_bind(3)
Explainbind(2) errors

explain_bind_or_die(3)
bind a name to a socket and report errors

explain_calloc(3)
Explaincalloc(3) errors

explain_calloc_or_die(3)
Allocate and clear memory and report errors

explain_chdir(3)
Explainchdir(2) errors

explain_chdir_or_die(3)
change working directory and report errors

explain_chmod(3)
Explainchmod(2) errors

explain_chmod_or_die(3)
change permissions of a file and report errors

explain_chown(3)
Explainchownerrors

explain_chown_or_die(3)
change ownership of a file and report errors

explain_chroot(3)
Explainchroot(2) errors

explain_chroot_or_die(3)
change root directory and report errors

explain_close(3)
Explainclose(2) errors

explain_close_or_die(3)
close a file descriptor and report errors

explain_closedir(3)
Explainclosedir(3) errors

explain_closedir_or_die(3)
close a directory and report errors

explain_connect(3)
Explainconnect(2) errors

explain_connect_or_die(3)
initiate a connection on a socket and report errors

explain_creat(3)
Explaincreat(2) errors

explain_creat_or_die(3)
create and open a file and report errors

explain_dirfd(3)
Explaindirfd(3) errors

explain_dirfd_or_die(3)
get directory stream file descriptor and report errors

62

libexplain(3) libexplain(3)

explain_dup(3)
Explaindup(2) errors

explain_dup_or_die(3)
duplicate a file descriptor and report errors

explain_dup2(3)
Explaindup2(2) errors

explain_dup2_or_die(3)
duplicate a file descriptor and report errors

explain_endgrent(3)
Explainendgrent(3) errors

explain_endgrent_or_die(3)
finish group file accesses and report errors

explain_eventfd(3)
Explaineventfd(2) errors

explain_eventfd_or_die(3)
create a file descriptor for event notification and report errors

explain_execlp(3)
Explainexeclp(3) errors

explain_execlp_or_die(3)
execute a file and report errors

explain_execv(3)
Explainexecv(3) errors

explain_execv_or_die(3)
execute a file and report errors

explain_execve(3)
Explainexecve(2) errors

explain_execve_or_die(3)
execute program and report errors

explain_execvp(3)
Explainexecvp(3) errors

explain_execvp_or_die(3)
execute program and report errors

explain_exit(3)
print an explanation of exit status before exiting

explain_fchdir(3)
Explainfchdir(2) errors

explain_fchmod(3)
Explainfchmod(2) errors

explain_fchmod_or_die(3)
change permissions of an open file and report errors

explain_fchown(3)
Explainfchown(2) errors

explain_fchown_or_die(3)
change ownership of a file and report errors

63

libexplain(3) libexplain(3)

explain_fchownat(3)
Explainfchownat(2) errors

explain_fchownat_or_die(3)
change ownership of a file relative to a directory and report errors

explain_fclose(3)
Explainfclose(2) errors

explain_fclose_or_die(3)
close a stream and report errors

explain_fcntl(3)
Explainfcntl(2) errors

explain_fcntl_or_die(3)
Manipulate a file descriptor and report errors

explain_fdopen(3)
Explainfdopen(3) errors

explain_fdopen_or_die(3)
stream open function and report errors

explain_fdopendir(3)
Explainfdopendir(3) errors

explain_fdopendir_or_die(3)
open a directory and report errors

explain_feof(3)
Explainfeof(3) errors

explain_feof_or_die(3)
check and reset stream status and report errors

explain_ferror(3)
Explainferror(3) errors

explain_ferror_or_die(3)
check stream status and report errors

explain_fflush(3)
Explainfflush(3) errors

explain_fflush_or_die(3)
flush a stream and report errors

explain_fgetc(3)
Explainfgetc(3) errors

explain_fgetc_or_die(3)
input of characters and report errors

explain_fgetpos(3)
Explainfgetpos(3) errors

explain_fgetpos_or_die(3)
reposition a stream and report errors

explain_fgets(3)
Explainfgets(3) errors

explain_fgets_or_die(3)
input of strings and report errors

64

libexplain(3) libexplain(3)

explain_fileno(3)
Explainfileno(3) errors

explain_fileno_or_die(3)
check and reset stream status and report errors

explain_flock(3)
Explainflock(2) errors

explain_flock_or_die(3)
apply or remove an advisory lock on an open file and report errors

explain_fopen(3)
Explainfopen(3) errors

explain_fopen_or_die(2)
open files and report errors

explain_fork(3)
Explainfork(2) errors

explain_fork_or_die(3)
create a child process and report errors

explain_fpathconf(3)
Explainfpathconf(3) errors

explain_fpathconf_or_die(3)
get configuration values for files and report errors

explain_fprintf(3)
Explainfprintf(3) errors

explain_fprintf_or_die(3)
formatted output conversion and report errors

explain_fpurge(3)
Explainfpurge(3) errors

explain_fpurge_or_die(3)
purge a stream and report errors

explain_fputc(3)
Explainfputc(3) errors

explain_fputc_or_die(3)
output of characters and report errors

explain_fputs(3)
Explainfputs(3) errors

explain_fputs_or_die(3)
write a string to a stream and report errors

explain_fread(3)
Explainfread(3) errors

explain_fread_or_die(3)
binary stream input and report errors

explain_freopen(3)
Explainfreopen(3) errors

explain_freopen_or_die(3)
open files and report errors

65

libexplain(3) libexplain(3)

explain_fseek(3)
Explainfseek(3) errors

explain_fseek_or_die(3)
reposition a stream and report errors

explain_fseeko(3)
Explainfseeko(3) errors

explain_fseeko_or_die(3)
seek to or report file position and report errors

explain_fsetpos(3)
Explainfsetpos(3) errors

explain_fsetpos_or_die(3)
reposition a stream and report errors

explain_fstat(3)
Explainfstat(3) errors

explain_fstat_or_die(3)
get file status and report errors

explain_fstatat(3)
Explainfstatat(2) errors

explain_fstatat_or_die(3)
get file status relative to a directory file descriptor and report errors

explain_fstatfs(3)
Explainfstatfs(2) errors

explain_fstatfs_or_die(3)
get file system statistics and report errors

explain_fstatvfs(3)
Explainfstatvfs(2) errors

explain_fstatvfs_or_die(3)
get file system statistics and report errors

explain_fsync(3)
Explainfsync(2) errors

explain_fsync_or_die(3)
synchronize a file’s in-core state with storage device and report errors

explain_ftell(3)
Explainftell(3) errors

explain_ftell_or_die(3)
get stream position and report errors

explain_ftello(3)
Explainftello(3) errors

explain_ftello_or_die(3)
get stream position and report errors

explain_ftime(3)
Explainftime(3) errors

explain_ftime_or_die(3)
return date and time and report errors

66

libexplain(3) libexplain(3)

explain_ftruncate(3)
Explainftruncate(2) errors

explain_ftruncate_or_die(3)
truncate a file to a specified length and report errors

explain_futimens(3)
Explainfutimens(3) errors

explain_futimens_or_die(3)
change file timestamps with nanosecond precision and report errors

explain_futimes(3)
Explainfutimes(3) errors

explain_futimes_or_die(3)
Executefutimes(3) and report errors

explain_futimesat(3)
Explainfutimesat(2) errors

explain_futimesat_or_die(3)
change timestamps of a file relative to a directory andreport errors

explain_fwrite(3)
Explainfwrite(3) errors

explain_fwrite_or_die(3)
binary stream output and report errors

explain_futimesat(3)
Explainfutimesat(2) errors

explain_futimesat_or_die(3)
change timestamps of a file relative to a directory andreport errors

explain_getaddrinfo(3)
Explaingetaddrinfo(3) errors

explain_getaddrinfo_or_die(3)
network address and and report errors

explain_getc(3)
Explaingetc(3) errors

explain_getc_or_die(3)
input of characters and report errors

explain_getchar(3)
Explaingetchar(3) errors

explain_getchar_or_die(3)
input of characters and report errors

explain_getcwd(3)
Explaingetcwd(2) errors

explain_getdomainname(3)
Explaingetdomainname(2) errors

explain_getdomainname_or_die(3)
get domain name and report errors

explain_getgrent(3)
Explaingetgrent(3) errors

67

libexplain(3) libexplain(3)

explain_getgrent_or_die(3)
get group file entry and report errors

explain_getgrouplist(3)
Explaingetgrouplist(3) errors

explain_getgrouplist_or_die(3)
get list of groups to which a user belongs and report errors

explain_getgroups(3)
Explaingetgroups(2) errors

explain_getgroups_or_die(3)
get list of supplementary group IDs and report errors

explain_getcwd_or_die(3)
Get current working directory and report errors

explain_gethostbyname(3)
Explaingethostbyname(3) errors

explain_gethostbyname_or_die(3)
get host address given host name and report errors

explain_gethostid(3)
Explaingethostid(3) errors

explain_gethostid_or_die(3)
get the unique identifier of the current host and report errors

explain_gethostname(3)
Explaingethostname(2) errors

explain_gethostname_or_die(3)
get hostname and report errors

explain_getpeername(3)
Explaingetpeername(2) errors

explain_getpeername_or_die(3)
Executegetpeername(2) and report errors

explain_getpgid(3)
Explaingetpgid(2) errors

explain_getpgid_or_die(3)
get process group and report errors

explain_getpgrp(3)
Explaingetpgrp(2) errors

explain_getpgrp_or_die(3)
get process group and report errors

explain_getpriority(3)
Explaingetpriority(2) errors

explain_getpriority_or_die(3)
get program scheduling priority and report errors

explain_getresgid(3)
Explaingetresgid(2) errors

explain_getresgid_or_die(3)
get real, effective and saved group IDs and report errors

68

libexplain(3) libexplain(3)

explain_getresuid(3)
Explaingetresuid(2) errors

explain_getresuid_or_die(3)
get real, effective and saved user IDs and report errors

explain_getrlimit(3)
Explaingetrlimit (2) errors

explain_getrlimit_or_die(3)
get resource limits and report errors

explain_getrusage(3)
Explaingetrusage(2) errors

explain_getrusage_or_die(3)
get resource usage and report errors

explain_getsockname(3)
Explaingetsockname(2) errors

explain_getsockname_or_die(3)
Executegetsockname(2) and report errors

explain_getsockopt(3)
Explaingetsockopt(2) errors

explain_getsockopt_or_die(3)
Executegetsockopt(2) and report errors

explain_gettimeofday(3)
Explaingettimeofday(2) errors

explain_gettimeofday_or_die(3)
get time and report errors

explain_getw(3)
Explaingetw(3) errors

explain_getw_or_die(3)
input a word (int) and report errors

explain_iconv(3)
Explain iconv(3) errors

explain_iconv_or_die(3)
perform character set conversion and report errors

explain_iconv_close(3)
Explain iconv_close(3) errors

explain_iconv_close_or_die(3)
deallocate descriptor for character set conversion and report errors

explain_iconv_open(3)
Explain iconv_open(3) errors

explain_iconv_open_or_die(3)
allocate descriptor for character set conversion and report errors

explain_ioctl(3)
Explain ioctl(2) errors

explain_ioctl_or_die(3)
Executeioctl(2) and report errors

69

libexplain(3) libexplain(3)

explain_kill(3)
Explainkill (2) errors

explain_kill_or_die(3)
send signal to a process and report errors

explain_lchmod(3)
Explain lchmod(2) errors

explain_lchmod_or_die(3)
change permissions of a file and report errors

explain_lchown(3)
Explain lchown(2) errors

explain_lchown_or_die(3)
change ownership of a file and report errors

explain_lchownat(3)
Explain lchownat(2) errors

explain_lchownat_or_die(3)
Executelchownat(2) and report errors

explain_link(3)
Explain link(2) errors

explain_link_or_die(3)
make a new name for a file and report errors

explain_linkat(3)
Explain linkat(2) errors

explain_linkat_or_die(3)
create a file link relative to directory file descriptors and report errors

explain_listen(3)
Explain listen(2) errors

explain_listen_or_die(3)
listen for connections on a socket and report errors

explain_lseek(3)
Explain lseek(2) errors

explain_lseek_or_die(3)
reposition file offset and report errors

explain_lstat(3)
Explain lstat(2) errors

explain_lstat_or_die(3)
get file status and report errors

explain_lutimes(3)
Explain lutimes(3) errors

explain_lutimes_or_die(3)
modify file timestamps and report errors

explain_malloc(3)
Explainmalloc(3) errors

explain_malloc_or_die(3)
Executemalloc(3) and report errors

70

libexplain(3) libexplain(3)

explain_mkdir(3)
Explainmkdir(2) errors

explain_mkdir_or_die(3)
create directory and report errors

explain_mkdtemp(3)
Explainmkdtemp(3) errors

explain_mkdtemp_or_die(3)
create a unique temporary directory and report errors

explain_mknod(3)
Explainmknod(2) errors

explain_mknod_or_die(3)
create a special or ordinary file and report errors

explain_mkostemp(3)
Explainmkostemp(3) errors

explain_mkostemp_or_die(3)
create a unique temporary file and report errors

explain_mkstemp(3)
Explainmkstemp(3) errors

explain_mkstemp_or_die(3)
create a unique temporary file and report errors

explain_mktemp(3)
Explainmktemp(3) errors

explain_mktemp_or_die(3)
make a unique temporary filename and report errors

explain_mmap(3)
Explainmmap(2) errors

explain_mmap_or_die(3)
map file or device into memory and report errors

explain_mount(3)
Explainmount(2) errors

explain_mount_or_die(3)
mount file system and report errors

explain_munmap(3)
Explainmunmap(2) errors

explain_munmap_or_die(3)
unmap a file or device from memory and report errors

explain_nanosleep(3)
Explainnanosleep(2) errors

explain_nanosleep_or_die(3)
high-resolution sleep and report errors

explain_nice(3)
Explainnice(2) errors

explain_nice_or_die(3)
change process priority and report errors

71

libexplain(3) libexplain(3)

explain_open(3)
Explainopen(2) errors

explain_open_or_die(3)
open files and report errors

explain_openat(3)
Explainopenat(2) errors

explain_openat_or_die(3)
open a file relative to a directory file descriptor and report errors

explain_opendir(3)
Explainopendir(3) errors

explain_opendir_or_die(3)
open a directory and report errors

explain_pathconf(3)
Explainpathconf(3) errors

explain_pathconf_or_die(3)
get configuration values for files and report errors

explain_pclose(3)
Explainpclose(3) errors

explain_pclose_or_die(3)
Executepclose(3) and report errors

explain_pipe(3)
Explainpipe(2) errors

explain_pipe_or_die(3)
Executepipe(2) and report errors

explain_pipe2(3)
Explainpipe2(2) errors

explain_pipe2_or_die(3)
create pipe and report errors

explain_poll(3)
Explainpoll(2) errors

explain_poll_or_die(3)
wait for some event on a file descriptor and report errors

explain_popen(3)
Explainpopen(3) errors

explain_popen_or_die(3)
Executepopen(3) and report errors

explain_pread(3)
Explainpread(2) errors

explain_pread_or_die(3)
read from a file descriptor at a given offset and report errors

explain_printf(3)
Explainprintf(3) errors

explain_printf_or_die(3)
formatted output conversion and report errors

72

libexplain(3) libexplain(3)

explain_ptrace(3)
Explainptrace(2) errors

explain_ptrace_or_die(3)
process trace and report errors

explain_putc(3)
Explainputc(3) errors

explain_putc_or_die(3)
output of characters and report errors

explain_putchar(3)
Explainputchar(3) errors

explain_putchar_or_die(3)
output of characters and report errors

explain_putenv(3)
Explainputenv(3) errors

explain_putenv_or_die(3)
change or add an environment variable and report errors

explain_puts(3)
Explainputs(3) errors

explain_puts_or_die(3)
write a string and a trailing newline to stdout and report errors

explain_putw(3)
Explainputw(3) errors

explain_putw_or_die(3)
output a word (int) and report errors

explain_pwrite(3)
Explainpwrite(2) errors

explain_pwrite_or_die(3)
write to a file descriptor at a given offset and report errors

explain_raise(3)
Explainraise(3) errors

explain_raise_or_die(3)
send a signal to the caller and report errors

explain_read(3)
Explainread(2) errors

explain_read_or_die(3)
read from a file descriptor and report errors

explain_readdir(3)
Explainreaddir(3) errors

explain_readdir_or_die(3)
read a directory and report errors

explain_readlink(3)
Explainreadlink(2) errors

explain_readlink_or_die(3)
read value of a symbolic link and report errors

73

libexplain(3) libexplain(3)

explain_readv(3)
Explainreadv(2) errors

explain_readv_or_die(3)
read data into multiple buffers and report errors

explain_realloc(3)
Explainrealloc(3) errors

explain_realloc_or_die(3)
Executerealloc(3) and report errors

explain_realpath(3)
Explainrealpath(3) errors

explain_realpath_or_die(3)
return the canonicalized absolute pathname and report errors

explain_rename(3)
Explainrename(2) errors

explain_rename_or_die(3)
change the name or location of a file and report errors

explain_rmdir(3)
Explainrmdir(2) errors

explain_rmdir_or_die(3)
delete a directory and report errors

explain_select(3)
Explainselect(2) errors

explain_select_or_die(3)
executeselect(2) and report errors

explain_setbuf(3)
Explainsetbuf(3) errors

explain_setbuffer(3)
Explainsetbuffer(3) errors

explain_setbuffer_or_die(3)
stream buffering operations and report errors

explain_setbuf_or_die(3)
set stream buffer and report errors

explain_setdomainname(3)
Explainsetdomainname(2) errors

explain_setdomainname_or_die(3)
set domain name and report errors

explain_setenv(3)
Explainsetenv(3) errors

explain_setenv_or_die(3)
change or add an environment variable and report errors

explain_setgid(3)
Explainsetgid(2) errors

explain_setgid_or_die(3)
set group identity and report errors

74

libexplain(3) libexplain(3)

explain_setgrent(3)
Explainsetgrent(3) errors

explain_setgrent_or_die(3)
rewind to the start of the group database and report errors

explain_setgroups(3)
Explainsetgroups(2) errors

explain_setgroups_or_die(3)
get list of supplementary group IDs and report errors

explain_sethostname(3)
Explainsethostname(2) errors

explain_sethostname_or_die(3)
set hostname and report errors

explain_setlinebuf(3)
Explainsetlinebuf(3) errors

explain_setlinebuf_or_die(3)
stream buffering operations and report errors

explain_setpgid(3)
Explainsetpgid(2) errors

explain_setpgid_or_die(3)
set process group and report errors

explain_setpgrp(3)
Explainsetpgrp(2) errors

explain_setpgrp_or_die(3)
set process group and report errors

explain_setpriority(3)
Explainsetpriority(2) errors

explain_setpriority_or_die(3)
set program scheduling priority and report errors

explain_setregid(3)
Explainsetregid(2) errors

explain_setregid_or_die(3)
set real and/or effective group ID and report errors

explain_setreuid(3)
Explainsetreuid(2) errors

explain_setreuid_or_die(3)
set the real and effective user ID and report errors

explain_setresgid(3)
Explainsetresgid(2) errors

explain_setresgid_or_die(3)
set real, effective and saved group ID and report errors

explain_setresuid(3)
Explainsetresuid(2) errors

explain_setresuid_or_die(3)
set real, effective and saved user ID and report errors

75

libexplain(3) libexplain(3)

explain_setreuid(3)
Explainsetreuid(2) errors

explain_setreuid_or_die(3)
set real and/or effective user ID and report errors

explain_setsid(3)
Explainsetsid(2) errors

explain_setsid_or_die(3)
creates a session and sets the process group ID and report errors

explain_setsockopt(3)
Explainsetsockopt(2) errors

explain_setsockopt_or_die(3)
executesetsockopt(2) and report errors

explain_settimeofday(3)
Explainsettimeofday(2) errors

explain_settimeofday_or_die(3)
sets system time and report errors

explain_setuid(3)
Explainsetuid(2) errors

explain_setuid_or_die(3)
set user identity and report errors

explain_setvbuf(3)
Explainsetvbuf(3) errors

explain_setvbuf_or_die(3)
stream buffering operations and report errors

explain_shmat(3)
Explainshmat(2) errors

explain_shmat_or_die(3)
shared memory attach and report errors

explain_shmctl(3)
Explainshmctl(2) errors

explain_shmctl_or_die(3)
shared memory control and report errors

explain_signalfd(3)
Explainsignalfd(2) errors

explain_signalfd_or_die(3)
create a file descriptor for accepting signals and report errors

explain_sleep(3)
Explainsleep(3) errors

explain_sleep_or_die(3)
Sleep for the specified number of seconds and report errors

explain_socket(3)
Explainsocket(2) errors

explain_socket_or_die(3)
create an endpoint for communication and report errors

76

libexplain(3) libexplain(3)

explain_socketpair(3)
Explainsocketpair(2) errors

explain_socketpair_or_die(3)
create a pair of connected sockets and report errors

explain_sprintf(3)
Explainsprintf(3) errors

explain_sprintf_or_die(3)
formatted output conversion and report errors

explain_stat(3)
Explainstat(2) errors

explain_statfs(3)
Explainstatfs(2) errors

explain_statfs_or_die(3)
get file system statistics and report errors

explain_statvfs(3)
Explainstatvfs(2) errors

explain_statvfs_or_die(3)
get file system statistics and report errors

explain_stime(3)
Explainstime(2) errors

explain_stime_or_die(3)
set system time and report errors

explain_strcoll(3)
Explainstrcoll(3) errors

explain_strcoll_or_die(3)
compare two strings using the current locale and report errors

explain_strdup(3)
Explainstrdup(3) errors

explain_strdup_or_die(3)
duplicate a string and report errors

explain_strndup(3)
Explainstrndup(3) errors

explain_strndup_or_die(3)
duplicate a string and report errors

explain_strtod(3)
Explainstrtod(3) errors

explain_strtod_or_die(3)
convert string to floating-point number and report errors

explain_strtof(3)
Explainstrtof(3) errors

explain_strtof_or_die(3)
convert string to floating-point number and report errors

explain_strtol(3)
Explainstrtol(3) errors

77

libexplain(3) libexplain(3)

explain_strtol_or_die(3)
convert a string to a long integer and report errors

explain_strtold(3)
Explainstrtold(3) errors

explain_strtold_or_die(3)
convert string to floating-point number and report errors

explain_strtoll(3)
Explainstrtoll(3) errors

explain_strtoll_or_die(3)
convert a string to a long long integer and report errors

explain_strtoul(3)
Explainstrtoul(3) errors

explain_strtoul_or_die(3)
convert a string to a long long integer and report errors

explain_strtoull(3)
Explainstrtoull(3) errors

explain_strtoull_or_die(3)
convert a string to an unsigned long long integer and report errors

explain_symlink(3)
Explainsymlink(2) errors

explain_symlink_or_die(3)
make a new name for a file and report errors

explain_system(3)
Explainsystem(3) errors

explain_system_or_die(3)
execute a shell command and report errors

explain_tcdrain(3)
Explaintcdrain(3) errors

explain_tcdrain_or_die(3)
Executetcdrain(3) and report errors

explain_tcflow(3)
Explaintcflow(3) errors

explain_tcflow_or_die(3)
Executetcflow(3) and report errors

explain_tcflush(3)
Explaintcflush(3) errors

explain_tcflush_or_die(3)
discard terminal data and report errors

explain_tcgetattr(3)
Explaintcgetattr(3) errors

explain_tcgetattr_or_die(3)
get terminal parameters and report errors

explain_tcsendbreak(3)
Explaintcsendbreak(3) errors

78

libexplain(3) libexplain(3)

explain_tcsendbreak_or_die(3)
send terminal line break and report errors

explain_tcsetattr(3)
Explaintcsetattr(3) errors

explain_tcsetattr_or_die(3)
set terminal attributes and report errors

explain_telldir(3)
Explaintelldir(3) errors

explain_telldir_or_die(3)
return current location in directory stream and report errors

explain_tempnam(3)
Explaintempnam(3) errors

explain_tempnam_or_die(3)
create a name for a temporary file and report errors

explain_time(3)
Explaintime(2) errors

explain_time_or_die(3)
get time in seconds and report errors

explain_timerfd_create(3)
Explaintimerfd_create(2) errors

explain_timerfd_create_or_die(3)
timers that notify via file descriptors and report errors

explain_tmpfile(3)
Explaintmpfile(3) errors

explain_tmpfile_or_die(3)
create a temporary file and report errors

explain_tmpnam(3)
Explaintmpnam(3) errors

explain_tmpnam_or_die(3)
create a name for a temporary file and report errors

explain_truncate(3)
Explaintruncate(2) errors

explain_truncate_or_die(3)
truncate a file to a specified length and report errors

explain_usleep(3)
Explainusleep(3) errors

explain_usleep_or_die(3)
suspend execution for microsecond intervals and report errors

explain_uname(3)
Explainuname(2) errors

explain_uname_or_die(3)
get name and information about current kernel and report errors

explain_ungetc(3)
Explainungetc(3) errors

79

libexplain(3) libexplain(3)

explain_ungetc_or_die(3)
push a character back to a stream and report errors

explain_unlink(3)
Explainunlink(2) errors

explain_unlink_or_die(3)
delete a file and report errors

explain_unsetenv(3)
Explainunsetenv(3) errors

explain_unsetenv_or_die(3)
remove an environment variable and report errors

explain_ustat(3)
Explainustat(2) errors

explain_ustat_or_die(3)
get file system statistics and report errors

explain_utime(3)
Explainutime(2) errors

explain_utime_or_die(3)
change file last access and modification times and report errors

explain_utimens(3)
Explainutimens(2) errors

explain_utimens_or_die(3)
change file last access and modification times and report errors

explain_utimensat(3)
Explainutimensat(2) errors

explain_utimensat_or_die(3)
change file timestamps with nanosecond precision and report errors

explain_utimes(3)
Explainutimes(2) errors

explain_utimes_or_die(3)
change file last access and modification times and report errors

explain_vasprintf(3)
Explainvasprintf(3) errors

explain_vasprintf_or_die(3)
print to allocated string and report errors

explain_vfork(3)
Explainvfork(2) errors

explain_vfork_or_die(3)
create a child process and block parent and report errors

explain_vfprintf(3)
Explainvfprintf(3) errors

explain_vfprintf_or_die(3)
formatted output conversion and report errors

explain_vprintf(3)
Explainvprintf(3) errors

80

libexplain(3) libexplain(3)

explain_vprintf_or_die(3)
formatted output conversion and report errors

explain_vsnprintf(3)
Explainvsnprintf(3) errors

explain_vsnprintf_or_die(3)
formatted output conversion and report errors

explain_snprintf(3)
Explainsnprintf(3) errors

explain_snprintf_or_die(3)
formatted output conversion and report errors

explain_vsprintf(3)
Explainvsprintf(3) errors

explain_vsprintf_or_die(3)
formatted output conversion and report errors

explain_wait(3)
Explainwait(2) errors

explain_wait_or_die(3)
wait for process to change state and report errors

explain_wait3(3)
Explainwait3(2) errors

explain_wait3_or_die(3)
wait for process to change state and report errors

explain_wait4(3)
Explainwait4(2) errors

explain_wait4_or_die(3)
wait for process to change state and report errors

explain_waitpid(3)
Explainwaitpid(2) errors

explain_waitpid_or_die(3)
wait for process to change state and report errors

explain_write(3)
Explainwrite(2) errors

explain_write_or_die(3)
write to a file descriptor and report errors

explain_writev(3)
Explainwritev(2) errors

explain_writev_or_die(3)
write data from multiple buffers and report errors

There are plans for additional coverage. Thislist is expected to expand in later releases of this library.

SEE ALSO
errno(3) number of last error

perror(3)
print a system error message

strerror(3)
return string describing error number

81

libexplain(3) libexplain(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

82

explain_accept(3) explain_accept(3)

NAME
explain_accept − explain accept(2) errors

SYNOPSIS
#include <libexplain/accept.h>

const char *explain_accept(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);
const char *explain_errno_accept(int errnum, int fildes, struct sockaddr *sock_addr, socklen_t
*sock_addr_size);
void explain_message_accept(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock_addrlen);
void explain_message_errno_accept(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addr, socklen_t *sock_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theaccept(2) system call.

explain_accept
const char *explain_accept(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);

Theexplain_acceptfunction is used to obtain an explanation of an error returned by theaccept(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock_addr, sock_addr_size) < 0)
{

fprintf(stderr, "%s\n", explain_accept(fildes, sock_addr,
sock_addr_size));

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_accept_or_die(3) function.

fildes The original fildes, exactly as passed to theaccept(2) system call.

sock_addr
The original sock_addr, exactly as passed to theaccept(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to theaccept(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_accept
const char *explain_errno_accept(int errnum, int fildes, struct sockaddr *sock_addr, socklen_t
*sock_addr_size);

Theexplain_errno_acceptfunction is used to obtain an explanation of an error returned by theaccept(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock_addr, sock_addr_size) < 0)
{

int err = errno;

83

explain_accept(3) explain_accept(3)

fprintf(stderr, "%s\n", explain_errno_accept(err, fildes, sock_addr,
sock_addr_size));

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_accept_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrnoglobal variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theaccept(2) system call.

sock_addr
The original sock_addr, exactly as passed to theaccept(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to theaccept(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_accept
void explain_message_accept(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock_addr_size);

Theexplain_message_acceptfunction may be used to obtain an explanation of an error returned by the
accept(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock_addr, sock_addr_size) < 0)
{

char message[3000];
explain_message_accept(message, sizeof(message), fildes, sock_addr,

sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_accept_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theaccept(2) system call.

sock_addr
The original sock_addr, exactly as passed to theaccept(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to theaccept(2) system call.

explain_message_errno_accept
void explain_message_errno_accept(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addr, socklen_t *sock_addr_size);

84

explain_accept(3) explain_accept(3)

Theexplain_message_errno_acceptfunction may be used to obtain an explanation of an error returned by
theaccept(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (accept(fildes, sock_addr, sock_addr_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_accept(message, sizeof(message), err, fildes,

sock_addr, sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_accept_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrnoglobal variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theaccept(2) system call.

sock_addr
The original sock_addr, exactly as passed to theaccept(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to theaccept(2) system call.

SEE ALSO
accept(2)

accept a connection on a socket

explain_accept_or_die(3)
accept a connection on a socket and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

85

explain_accept4(3) explain_accept4(3)

NAME
explain_accept4 − explain accept4(2) errors

SYNOPSIS
#include <libexplain/accept4.h>

const char *explain_accept4(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size, int flags);
const char *explain_errno_accept4(int errnum, int fildes, struct sockaddr *sock_addr, socklen_t
*sock_addr_size, int flags);
void explain_message_accept4(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock_addr_size, int flags);
void explain_message_errno_accept4(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addr, socklen_t *sock_addr_size, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theaccept4(2) system call.

explain_accept4
const char *explain_accept4(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size, int flags);

The explain_accept4function is used to obtain an explanation of an error returned by theaccept4(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to theaccept4(2) system call.

sock_addr
The original sock_addr, exactly as passed to theaccept4(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to theaccept4(2) system call.

flags The original flags, exactly as passed to theaccept4(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_accept4(fildes, sock_addr,
sock_addr_size, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_accept4_or_die(3) function.

explain_errno_accept4
const char *explain_errno_accept4(int errnum, int fildes, struct sockaddr *sock_addr, socklen_t
*sock_addr_size, int flags);

The explain_errno_accept4 function is used to obtain an explanation of an error returned by the
accept4(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

86

explain_accept4(3) explain_accept4(3)

explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theaccept4(2) system call.

sock_addr
The original sock_addr, exactly as passed to theaccept4(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to theaccept4(2) system call.

flags The original flags, exactly as passed to theaccept4(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_accept4(err, fildes,
sock_addr, sock_addr_size, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_accept4_or_die(3) function.

explain_message_accept4
void explain_message_accept4(char *message, int message_size, int fildes, struct sockaddr *sock_addr,
socklen_t *sock_addr_size, int flags);

The explain_message_accept4function is used to obtain an explanation of an error returned by the
accept4(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theaccept4(2) system call.

sock_addr
The original sock_addr, exactly as passed to theaccept4(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to theaccept4(2) system call.

flags The original flags, exactly as passed to theaccept4(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)
{

char message[3000];
explain_message_accept4(message, sizeof(message), fildes,
sock_addr, sock_addr_size, flags);
fprintf(stderr, "%s\n", message);

87

explain_accept4(3) explain_accept4(3)

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_accept4_or_die(3) function.

explain_message_errno_accept4
void explain_message_errno_accept4(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addr, socklen_t *sock_addr_size, int flags);

Theexplain_message_errno_accept4function is used to obtain an explanation of an error returned by the
accept4(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theaccept4(2) system call.

sock_addr
The original sock_addr, exactly as passed to theaccept4(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to theaccept4(2) system call.

flags The original flags, exactly as passed to theaccept4(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = accept4(fildes, sock_addr, sock_addr_size, flags);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_accept4(message, sizeof(message), err,
fildes, sock_addr, sock_addr_size, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_accept4_or_die(3) function.

SEE ALSO
accept4(2)

accept a connection on a socket

explain_accept4_or_die(3)
accept a connection on a socket and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

88

explain_accept4_or_die(3) explain_accept4_or_die(3)

NAME
explain_accept4_or_die − accept a connection on a socket and report errors

SYNOPSIS
#include <libexplain/accept4.h>

int explain_accept4_or_die(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size, int flags);
int explain_accept4_on_error(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size, int flags);

DESCRIPTION
Theexplain_accept4_or_diefunction is used to call theaccept4(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_accept4(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_accept4_on_error function is used to call theaccept4(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_accept4(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to theaccept4(2) system call.

sock_addr
The sock_addr, exactly as to be passed to theaccept4(2) system call.

sock_addr_size
The sock_addr_size, exactly as to be passed to theaccept4(2) system call.

flags The flags, exactly as to be passed to theaccept4(2) system call.

RETURN VALUE
The explain_accept4_or_diefunction only returns on success, seeaccept4(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_accept4_on_errorfunction always returns the value return by the wrappedaccept4(2) system
call.

EXAMPLE
Theexplain_accept4_or_diefunction is intended to be used in a fashion similar to the following example:

int result = explain_accept4_or_die(fildes, sock_addr, sock_addr_size, flags);

SEE ALSO
accept4(2)

accept a connection on a socket

explain_accept4(3)
explainaccept4(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

89

explain_accept_or_die(3) explain_accept_or_die(3)

NAME
explain_accept_or_die − accept a connection on a socket and report errors

SYNOPSIS
#include <libexplain/accept.h>

int explain_accept_or_die(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);

DESCRIPTION
The explain_accept_or_diefunction is used to call theaccept(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_accept(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int fd = explain_accept_or_die(fildes, sock_addr, sock_addr_size);

fildes The fildes, exactly as to be passed to theaccept(2) system call.

sock_addr
The sock_addr, exactly as to be passed to theaccept(2) system call.

sock_addr_size
The sock_addr_size, exactly as to be passed to theaccept(2) system call.

Returns: This function only returns on success, seeaccept(2) for more information. On failure, prints an
explanation and exits.

SEE ALSO
accept(2)

accept a connection on a socket

explain_accept(3)
explainaccept(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

90

explain_access(3) explain_access(3)

NAME
explain_access − explain access(2) errors

SYNOPSIS
#include <libexplain/access.h>
const char *explain_access(const char *pathname, int mode);
const char *explain_errno_access(int errnum, const char *pathname, int mode);
void explain_message_access(char *message, int message_size, const char *pathname, int mode);
void explain_message_errno_access(char *message, int message_size, int errnum, const char *pathname,
int mode);

DESCRIPTION
These functions may be used to obtain explanations foraccess(2) errors.

explain_access
const char *explain_access(const char *pathname, int mode);

The explain_access function is used to obtain an explanation of an error returned by theaccess(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int fd = access(pathname, mode);
if (fd < 0)
{

fprintf(stderr, "%s0, explain_access(pathname, mode));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to theaccess(2) system call.

mode The original mode, exactly as passed to theaccess(2) system call. TP 8n Returns: The message
explaining the error. This message buffer is shared by all libexplain functions which do not
supply a buffer in their argument list. This will be overwritten by the next call to any libexplain
function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_access
const char *explain_errno_access(int errnum, const char *pathname, int mode);

The explain_errno_access function is used to obtain an explanation of an error returned by theaccess(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int fd = access(pathname, mode);
if (fd < 0)
{

int err = errno;
fprintf(stderr, "%s0, explain_errno_access(err, pathname,

mode));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

91

explain_access(3) explain_access(3)

explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theaccess(2) system call.

mode The original mode, exactly as passed to theaccess(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_access
void explain_message_access(char *message, int message_size, const char *pathname, int mode);

The explain_message_access function is used to obtain an explanation of an error returned by theaccess(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int fd = access(pathname, mode);
if (fd < 0)
{

char message[3000];
explain_message_access(message, sizeof(message), pathname,

mode);
fprintf(stderr, "%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theaccess(2) system call.

mode The original mode, exactly as passed to theaccess(2) system call.

explain_message_errno_access
void explain_message_errno_access(char *message, int message_size, int errnum, const char *pathname,
int mode);

The explain_message_errno_access function is used to obtain an explanation of an error returned by the
access(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following exameple:
int fd = access(pathname, mode);
if (fd < 0)
{

int err = errno;
char message[3000];
explain_message_errno_access(message, sizeof(message), err,

pathname, mode);
fprintf(stderr, "%s0, message);
exit(EXIT_FAILURE);

92

explain_access(3) explain_access(3)

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theaccess(2) system call.

mode The original mode, exactly as passed to theaccess(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

93

explain_access_or_die(3) explain_access_or_die(3)

NAME
explain_access_or_die − check permissions for a file and report errors

SYNOPSIS
#include <libexplain/libexplain.h>
void explain_access_or_die(const char *pathname, int mode);

DESCRIPTION
The explain_access_or_die function is used to call theaccess(2) system call and check the result.On
failure it prints an explanation of the error, obtained fromexplain_access(3), and then terminates by calling
exit(EXIT_FAILURE) .

explain_access_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed to theaccess(2) system call.

mode The mode, exactly as to be passed to theaccess(2) system call.

Returns: Only ever return on success. On failure process will exit.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

94

explain_acct(3) explain_acct(3)

NAME
explain_acct − explain acct(2) errors

SYNOPSIS
#include <libexplain/acct.h>

const char *explain_acct(const char *pathname);
const char *explain_errno_acct(int errnum, const char *pathname);
void explain_message_acct(char *message, int message_size, const char *pathname);
void explain_message_errno_acct(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theacct(2) system call.

explain_acct
const char *explain_acct(const char *pathname);

Theexplain_acctfunction is used to obtain an explanation of an error returned by theacct(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to theacct(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)
{

fprintf(stderr, "%s\n", explain_acct(pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_acct_or_die(3) function.

explain_errno_acct
const char *explain_errno_acct(int errnum, const char *pathname);

The explain_errno_acct function is used to obtain an explanation of an error returned by theacct(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theacct(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

95

explain_acct(3) explain_acct(3)

if (acct(pathname) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_acct(err, pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_acct_or_die(3) function.

explain_message_acct
void explain_message_acct(char *message, int message_size, const char *pathname);

The explain_message_acctfunction is used to obtain an explanation of an error returned by theacct(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theacct(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)
{

char message[3000];
explain_message_acct(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_acct_or_die(3) function.

explain_message_errno_acct
void explain_message_errno_acct(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_acctfunction is used to obtain an explanation of an error returned by the
acct(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theacct(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acct(pathname) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_acct(message, sizeof(message), err,

96

explain_acct(3) explain_acct(3)

pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_acct_or_die(3) function.

SEE ALSO
acct(2) switch process accounting on or off

explain_acct_or_die(3)
switch process accounting on or off and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

97

explain_acct_or_die(3) explain_acct_or_die(3)

NAME
explain_acct_or_die − switch process accounting on or off and report errors

SYNOPSIS
#include <libexplain/acct.h>

void explain_acct_or_die(const char *pathname);
int explain_acct_on_error(const char *pathname))

DESCRIPTION
Theexplain_acct_or_diefunction is used to call theacct(2) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_acct(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_acct_on_errorfunction is used to call theacct(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_acct(3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed to theacct(2) system call.

RETURN VALUE
The explain_acct_or_diefunction only returns on success, seeacct(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_acct_on_errorfunction always returns the value return by the wrappedacct(2) system call.

EXAMPLE
Theexplain_acct_or_diefunction is intended to be used in a fashion similar to the following example:

explain_acct_or_die(pathname);

SEE ALSO
acct(2) switch process accounting on or off

explain_acct(3)
explainacct(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

98

explain_acl_from_text(3) explain_acl_from_text(3)

NAME
explain_acl_from_text − explainacl_from_text(3) errors

SYNOPSIS
#include <libexplain/acl_from_text.h>

const char *explain_acl_from_text(const char *text);
const char *explain_errno_acl_from_text(int errnum, const char *text);
void explain_message_acl_from_text(char *message, int message_size, const char *text);
void explain_message_errno_acl_from_text(char *message, int message_size, int errnum, const char *text);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theacl_from_text(3) system call.

explain_acl_from_text
const char *explain_acl_from_text(const char *text);

The explain_acl_from_text function is used to obtain an explanation of an error returned by the
acl_from_text(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

text The original text, exactly as passed to theacl_from_text(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_from_text(text);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_acl_from_text(text));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_from_text_or_die(3) function.

explain_errno_acl_from_text
const char *explain_errno_acl_from_text(int errnum, const char *text);

The explain_errno_acl_from_text function is used to obtain an explanation of an error returned by the
acl_from_text(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

text The original text, exactly as passed to theacl_from_text(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_from_text(text);

99

explain_acl_from_text(3) explain_acl_from_text(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_from_text(err,
text));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_from_text_or_die(3) function.

explain_message_acl_from_text
void explain_message_acl_from_text(char *message, int message_size, const char *text);

Theexplain_message_acl_from_textfunction is used to obtain an explanation of an error returned by the
acl_from_text(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

text The original text, exactly as passed to theacl_from_text(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_from_text(text);
if (result < 0)
{

char message[3000];
explain_message_acl_from_text(message, sizeof(message), text);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_from_text_or_die(3) function.

explain_message_errno_acl_from_text
void explain_message_errno_acl_from_text(char *message, int message_size, int errnum, const char *text);

Theexplain_message_errno_acl_from_textfunction is used to obtain an explanation of an error returned
by the acl_from_text(3) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

text The original text, exactly as passed to theacl_from_text(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_from_text(text);
if (result < 0)
{

int err = errno;
char message[3000];

100

explain_acl_from_text(3) explain_acl_from_text(3)

explain_message_errno_acl_from_text(message, sizeof(message),
err, text);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_from_text_or_die(3) function.

SEE ALSO
acl_from_text(3)

create an ACL from text

explain_acl_from_text_or_die(3)
create an ACL from text and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

101

explain_acl_from_text_or_die(3) explain_acl_from_text_or_die(3)

NAME
explain_acl_from_text_or_die − create an ACL from text and report errors

SYNOPSIS
#include <libexplain/acl_from_text.h>

acl_t explain_acl_from_text_or_die(const char *text);
acl_t explain_acl_from_text_on_error(const char *text);

DESCRIPTION
Theexplain_acl_from_text_or_diefunction is used to call theacl_from_text(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_from_text(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

Theexplain_acl_from_text_on_error function is used to call theacl_from_text(3) system call. On failure
an explanation will be printed tostderr, obtained from theexplain_acl_from_text(3) function, but still
returns to the caller.

text The text, exactly as to be passed to theacl_from_text(3) system call.

RETURN VALUE
The explain_acl_from_text_or_die function only returns on success, seeacl_from_text(3) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_acl_from_text_on_error function always returns the value return by the wrapped
acl_from_text(3) system call.

EXAMPLE
The explain_acl_from_text_or_diefunction is intended to be used in a fashion similar to the following
example:

acl_t result = explain_acl_from_text_or_die(text);

SEE ALSO
acl_from_text(3)

create an ACL from text

explain_acl_from_text(3)
explainacl_from_text(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

102

explain_acl_get_fd(3) explain_acl_get_fd(3)

NAME
explain_acl_get_fd − explainacl_get_fd(3) errors

SYNOPSIS
#include <libexplain/acl_get_fd.h>

const char *explain_acl_get_fd(int fildes);
const char *explain_errno_acl_get_fd(int errnum, int fildes);
void explain_message_acl_get_fd(char *message, int message_size, int fildes);
void explain_message_errno_acl_get_fd(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theacl_get_fd(3) system call.

explain_acl_get_fd
const char *explain_acl_get_fd(int fildes);

Theexplain_acl_get_fdfunction is used to obtain an explanation of an error returned by theacl_get_fd(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to theacl_get_fd(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_get_fd(fildes);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_acl_get_fd(fildes));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_get_fd_or_die(3) function.

explain_errno_acl_get_fd
const char *explain_errno_acl_get_fd(int errnum, int fildes);

The explain_errno_acl_get_fd function is used to obtain an explanation of an error returned by the
acl_get_fd(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theacl_get_fd(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_get_fd(fildes);

103

explain_acl_get_fd(3) explain_acl_get_fd(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_get_fd(err,
fildes));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_get_fd_or_die(3) function.

explain_message_acl_get_fd
void explain_message_acl_get_fd(char *message, int message_size, int fildes);

The explain_message_acl_get_fdfunction is used to obtain an explanation of an error returned by the
acl_get_fd(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theacl_get_fd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_get_fd(fildes);
if (result < 0)
{

char message[3000];
explain_message_acl_get_fd(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_get_fd_or_die(3) function.

explain_message_errno_acl_get_fd
void explain_message_errno_acl_get_fd(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_acl_get_fdfunction is used to obtain an explanation of an error returned by
theacl_get_fd(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theacl_get_fd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_get_fd(fildes);
if (result < 0)
{

int err = errno;
char message[3000];

104

explain_acl_get_fd(3) explain_acl_get_fd(3)

explain_message_errno_acl_get_fd(message, sizeof(message),
err, fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_get_fd_or_die(3) function.

SEE ALSO
acl_get_fd(3)

Executeacl_get_fd(3)

explain_acl_get_fd_or_die(3)
Executeacl_get_fd(3) and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

105

explain_acl_get_fd_or_die(3) explain_acl_get_fd_or_die(3)

NAME
explain_acl_get_fd_or_die − Executeacl_get_fd(3) and report errors

SYNOPSIS
#include <libexplain/acl_get_fd.h>

acl_t explain_acl_get_fd_or_die(int fildes);
acl_t explain_acl_get_fd_on_error(int fildes);

DESCRIPTION
The explain_acl_get_fd_or_diefunction is used to call theacl_get_fd(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_get_fd(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_acl_get_fd_on_errorfunction is used to call theacl_get_fd(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_get_fd(3) function, but still returns to
the caller.

fildes The fildes, exactly as to be passed to theacl_get_fd(3) system call.

RETURN VALUE
The explain_acl_get_fd_or_diefunction only returns on success, seeacl_get_fd(3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_acl_get_fd_on_errorfunction always returns the value return by the wrappedacl_get_fd(3)
system call.

EXAMPLE
The explain_acl_get_fd_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_acl_get_fd_or_die(fildes);

SEE ALSO
acl_get_fd(3)

Executeacl_get_fd(3)

explain_acl_get_fd(3)
explainacl_get_fd(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

106

explain_acl_get_file(3) explain_acl_get_file(3)

NAME
explain_acl_get_file − explainacl_get_file(3) errors

SYNOPSIS
#include <libexplain/acl_get_file.h>

const char *explain_acl_get_file(const char *pathname, acl_type_t type);
const char *explain_errno_acl_get_file(int errnum, const char *pathname, acl_type_t type);
void explain_message_acl_get_file(char *message, int message_size, const char *pathname, acl_type_t
type);
void explain_message_errno_acl_get_file(char *message, int message_size, int errnum, const char
*pathname, acl_type_t type);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theacl_get_file(3) system call.

explain_acl_get_file
const char *explain_acl_get_file(const char *pathname, acl_type_t type);

The explain_acl_get_file function is used to obtain an explanation of an error returned by the
acl_get_file(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to theacl_get_file(3) system call.

type The original type, exactly as passed to theacl_get_file(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_get_file(pathname, type);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_acl_get_file(pathname, type));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_get_file_or_die(3) function.

explain_errno_acl_get_file
const char *explain_errno_acl_get_file(int errnum, const char *pathname, acl_type_t type);

The explain_errno_acl_get_file function is used to obtain an explanation of an error returned by the
acl_get_file(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theacl_get_file(3) system call.

type The original type, exactly as passed to theacl_get_file(3) system call.

107

explain_acl_get_file(3) explain_acl_get_file(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_get_file(pathname, type);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_get_file(err,
pathname, type));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_get_file_or_die(3) function.

explain_message_acl_get_file
void explain_message_acl_get_file(char *message, int message_size, const char *pathname, acl_type_t
type);

The explain_message_acl_get_filefunction is used to obtain an explanation of an error returned by the
acl_get_file(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theacl_get_file(3) system call.

type The original type, exactly as passed to theacl_get_file(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_get_file(pathname, type);
if (result < 0)
{

char message[3000];
explain_message_acl_get_file(message, sizeof(message),
pathname, type);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_get_file_or_die(3) function.

explain_message_errno_acl_get_file
void explain_message_errno_acl_get_file(char *message, int message_size, int errnum, const char
*pathname, acl_type_t type);

Theexplain_message_errno_acl_get_filefunction is used to obtain an explanation of an error returned by
theacl_get_file(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

108

explain_acl_get_file(3) explain_acl_get_file(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theacl_get_file(3) system call.

type The original type, exactly as passed to theacl_get_file(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
acl_t result = acl_get_file(pathname, type);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_acl_get_file(message, sizeof(message),
err, pathname, type);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_get_file_or_die(3) function.

SEE ALSO
acl_get_file(3)

Executeacl_get_file(3)

explain_acl_get_file_or_die(3)
Executeacl_get_file(3) and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

109

explain_acl_get_file_or_die(3) explain_acl_get_file_or_die(3)

NAME
explain_acl_get_file_or_die − Executeacl_get_file(3) and report errors

SYNOPSIS
#include <libexplain/acl_get_file.h>

acl_t explain_acl_get_file_or_die(const char *pathname, acl_type_t type);
acl_t explain_acl_get_file_on_error(const char *pathname, acl_type_t type);

DESCRIPTION
The explain_acl_get_file_or_diefunction is used to call theacl_get_file(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_get_file(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_acl_get_file_on_errorfunction is used to call theacl_get_file(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_get_file(3) function, but still returns to
the caller.

pathname
The pathname, exactly as to be passed to theacl_get_file(3) system call.

type The type, exactly as to be passed to theacl_get_file(3) system call.

RETURN VALUE
The explain_acl_get_file_or_die function only returns on success, seeacl_get_file(3) for more
information. On failure, prints an explanation and exits, it does not return.

Theexplain_acl_get_file_on_errorfunction always returns the value return by the wrappedacl_get_file(3)
system call.

EXAMPLE
The explain_acl_get_file_or_diefunction is intended to be used in a fashion similar to the following
example:

acl_t result = explain_acl_get_file_or_die(pathname, type);

SEE ALSO
acl_get_file(3)

Executeacl_get_file(3)

explain_acl_get_file(3)
explainacl_get_file(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

110

explain_acl_set_fd(3) explain_acl_set_fd(3)

NAME
explain_acl_set_fd − explainacl_set_fd(3) errors

SYNOPSIS
#include <libexplain/acl_set_fd.h>

const char *explain_acl_set_fd(int fildes, acl_t acl);
const char *explain_errno_acl_set_fd(int errnum, int fildes, acl_t acl);
void explain_message_acl_set_fd(char *message, int message_size, int fildes, acl_t acl);
void explain_message_errno_acl_set_fd(char *message, int message_size, int errnum, int fildes, acl_t acl);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theacl_set_fd(3) system call.

explain_acl_set_fd
const char *explain_acl_set_fd(int fildes, acl_t acl);

Theexplain_acl_set_fdfunction is used to obtain an explanation of an error returned by theacl_set_fd(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to theacl_set_fd(3) system call.

acl The original acl, exactly as passed to theacl_set_fd(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_fd(fildes, acl) < 0)
{

fprintf(stderr, "%s\n", explain_acl_set_fd(fildes, acl));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_set_fd_or_die(3) function.

explain_errno_acl_set_fd
const char *explain_errno_acl_set_fd(int errnum, int fildes, acl_t acl);

The explain_errno_acl_set_fd function is used to obtain an explanation of an error returned by the
acl_set_fd(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theacl_set_fd(3) system call.

acl The original acl, exactly as passed to theacl_set_fd(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

111

explain_acl_set_fd(3) explain_acl_set_fd(3)

if (acl_set_fd(fildes, acl) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_set_fd(err, fildes,
acl));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_set_fd_or_die(3) function.

explain_message_acl_set_fd
void explain_message_acl_set_fd(char *message, int message_size, int fildes, acl_t acl);

The explain_message_acl_set_fdfunction is used to obtain an explanation of an error returned by the
acl_set_fd(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theacl_set_fd(3) system call.

acl The original acl, exactly as passed to theacl_set_fd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_fd(fildes, acl) < 0)
{

char message[3000];
explain_message_acl_set_fd(message, sizeof(message), fildes,
acl);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_set_fd_or_die(3) function.

explain_message_errno_acl_set_fd
void explain_message_errno_acl_set_fd(char *message, int message_size, int errnum, int fildes, acl_t acl);

The explain_message_errno_acl_set_fdfunction is used to obtain an explanation of an error returned by
theacl_set_fd(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theacl_set_fd(3) system call.

acl The original acl, exactly as passed to theacl_set_fd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_fd(fildes, acl) < 0)
{

112

explain_acl_set_fd(3) explain_acl_set_fd(3)

int err = errno;
char message[3000];

explain_message_errno_acl_set_fd(message, sizeof(message),
err, fildes, acl);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_set_fd_or_die(3) function.

SEE ALSO
acl_set_fd(3)

set an ACL by file descriptor

explain_acl_set_fd_or_die(3)
set an ACL by file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

113

explain_acl_set_fd_or_die(3) explain_acl_set_fd_or_die(3)

NAME
explain_acl_set_fd_or_die − set an ACL by file descriptor and report errors

SYNOPSIS
#include <libexplain/acl_set_fd.h>

void explain_acl_set_fd_or_die(int fildes, acl_t acl);
int explain_acl_set_fd_on_error(int fildes, acl_t acl);

DESCRIPTION
The explain_acl_set_fd_or_diefunction is used to call theacl_set_fd(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_set_fd(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_acl_set_fd_on_errorfunction is used to call theacl_set_fd(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_set_fd(3) function, but still returns to
the caller.

fildes The fildes, exactly as to be passed to theacl_set_fd(3) system call.

acl The acl, exactly as to be passed to theacl_set_fd(3) system call.

RETURN VALUE
The explain_acl_set_fd_or_diefunction only returns on success, seeacl_set_fd(3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_acl_set_fd_on_errorfunction always returns the value return by the wrappedacl_set_fd(3)
system call.

EXAMPLE
The explain_acl_set_fd_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_acl_set_fd_or_die(fildes, acl);

SEE ALSO
acl_set_fd(3)

set an ACL by file descriptor

explain_acl_set_fd(3)
explainacl_set_fd(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

114

explain_acl_set_file(3) explain_acl_set_file(3)

NAME
explain_acl_set_file − explainacl_set_file(3) errors

SYNOPSIS
#include <libexplain/acl_set_file.h>

const char *explain_acl_set_file(const char *pathname, acl_type_t type, acl_t acl);
const char *explain_errno_acl_set_file(int errnum, const char *pathname, acl_type_t type, acl_t acl);
void explain_message_acl_set_file(char *message, int message_size, const char *pathname, acl_type_t
type, acl_t acl);
void explain_message_errno_acl_set_file(char *message, int message_size, int errnum, const char
*pathname, acl_type_t type, acl_t acl);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theacl_set_file(3) system call.

explain_acl_set_file
const char *explain_acl_set_file(const char *pathname, acl_type_t type, acl_t acl);

The explain_acl_set_file function is used to obtain an explanation of an error returned by the
acl_set_file(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to theacl_set_file(3) system call.

type The original type, exactly as passed to theacl_set_file(3) system call.

acl The original acl, exactly as passed to theacl_set_file(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_file(pathname, type, acl) < 0)
{

fprintf(stderr, "%s\n", explain_acl_set_file(pathname, type,
acl));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_set_file_or_die(3) function.

explain_errno_acl_set_file
const char *explain_errno_acl_set_file(int errnum, const char *pathname, acl_type_t type, acl_t acl);

The explain_errno_acl_set_filefunction is used to obtain an explanation of an error returned by the
acl_set_file(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theacl_set_file(3) system call.

115

explain_acl_set_file(3) explain_acl_set_file(3)

type The original type, exactly as passed to theacl_set_file(3) system call.

acl The original acl, exactly as passed to theacl_set_file(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_file(pathname, type, acl) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_set_file(err,
pathname, type, acl));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_set_file_or_die(3) function.

explain_message_acl_set_file
void explain_message_acl_set_file(char *message, int message_size, const char *pathname, acl_type_t
type, acl_t acl);

The explain_message_acl_set_filefunction is used to obtain an explanation of an error returned by the
acl_set_file(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theacl_set_file(3) system call.

type The original type, exactly as passed to theacl_set_file(3) system call.

acl The original acl, exactly as passed to theacl_set_file(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_file(pathname, type, acl) < 0)
{

char message[3000];
explain_message_acl_set_file(message, sizeof(message),
pathname, type, acl);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_set_file_or_die(3) function.

explain_message_errno_acl_set_file
void explain_message_errno_acl_set_file(char *message, int message_size, int errnum, const char
*pathname, acl_type_t type, acl_t acl);

Theexplain_message_errno_acl_set_filefunction is used to obtain an explanation of an error returned by
theacl_set_file(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

116

explain_acl_set_file(3) explain_acl_set_file(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theacl_set_file(3) system call.

type The original type, exactly as passed to theacl_set_file(3) system call.

acl The original acl, exactly as passed to theacl_set_file(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (acl_set_file(pathname, type, acl) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_acl_set_file(message, sizeof(message),
err, pathname, type, acl);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_set_file_or_die(3) function.

SEE ALSO
acl_set_file(3)

set an ACL by filename

explain_acl_set_file_or_die(3)
set an ACL by filename and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

117

explain_acl_set_file_or_die(3) explain_acl_set_file_or_die(3)

NAME
explain_acl_set_file_or_die − set an ACL by filename and report errors

SYNOPSIS
#include <libexplain/acl_set_file.h>

void explain_acl_set_file_or_die(const char *pathname, acl_type_t type, acl_t acl);
int explain_acl_set_file_on_error(const char *pathname, acl_type_t type, acl_t acl);

DESCRIPTION
The explain_acl_set_file_or_diefunction is used to call theacl_set_file(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_set_file(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_acl_set_file_on_errorfunction is used to call theacl_set_file(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_set_file(3) function, but still returns to
the caller.

pathname
The pathname, exactly as to be passed to theacl_set_file(3) system call.

type The type, exactly as to be passed to theacl_set_file(3) system call.

acl The acl, exactly as to be passed to theacl_set_file(3) system call.

RETURN VALUE
Theexplain_acl_set_file_or_diefunction only returns on success, seeacl_set_file(3) for more information.
On failure, prints an explanation and exits, it does not return.

Theexplain_acl_set_file_on_errorfunction always returns the value return by the wrappedacl_set_file(3)
system call.

EXAMPLE
The explain_acl_set_file_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_acl_set_file_or_die(pathname, type, acl);

SEE ALSO
acl_set_file(3)

set an ACL by filename

explain_acl_set_file(3)
explainacl_set_file(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

118

explain_acl_to_text(3) explain_acl_to_text(3)

NAME
explain_acl_to_text − explainacl_to_text(3) errors

SYNOPSIS
#include <libexplain/acl_to_text.h>

const char *explain_acl_to_text(acl_t acl, ssize_t *len_p);
const char *explain_errno_acl_to_text(int errnum, acl_t acl, ssize_t *len_p);
void explain_message_acl_to_text(char *message, int message_size, acl_t acl, ssize_t *len_p);
void explain_message_errno_acl_to_text(char *message, int message_size, int errnum, acl_t acl, ssize_t
*len_p);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theacl_to_text(3) system call.

explain_acl_to_text
const char *explain_acl_to_text(acl_t acl, ssize_t *len_p);

Theexplain_acl_to_textfunction is used to obtain an explanation of an error returned by theacl_to_text(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

acl The original acl, exactly as passed to theacl_to_text(3) system call.

len_p The original len_p, exactly as passed to theacl_to_text(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = acl_to_text(acl, len_p);
if (!result)
{

fprintf(stderr, "%s\n", explain_acl_to_text(acl, len_p));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_to_text_or_die(3) function.

explain_errno_acl_to_text
const char *explain_errno_acl_to_text(int errnum, acl_t acl, ssize_t *len_p);

The explain_errno_acl_to_text function is used to obtain an explanation of an error returned by the
acl_to_text(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

acl The original acl, exactly as passed to theacl_to_text(3) system call.

len_p The original len_p, exactly as passed to theacl_to_text(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

119

explain_acl_to_text(3) explain_acl_to_text(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = acl_to_text(acl, len_p);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_acl_to_text(err, acl,
len_p));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_to_text_or_die(3) function.

explain_message_acl_to_text
void explain_message_acl_to_text(char *message, int message_size, acl_t acl, ssize_t *len_p);

The explain_message_acl_to_textfunction is used to obtain an explanation of an error returned by the
acl_to_text(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

acl The original acl, exactly as passed to theacl_to_text(3) system call.

len_p The original len_p, exactly as passed to theacl_to_text(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = acl_to_text(acl, len_p);
if (!result)
{

char message[3000];
explain_message_acl_to_text(message, sizeof(message), acl,
len_p);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_to_text_or_die(3) function.

explain_message_errno_acl_to_text
void explain_message_errno_acl_to_text(char *message, int message_size, int errnum, acl_t acl, ssize_t
*len_p);

Theexplain_message_errno_acl_to_textfunction is used to obtain an explanation of an error returned by
theacl_to_text(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

120

explain_acl_to_text(3) explain_acl_to_text(3)

acl The original acl, exactly as passed to theacl_to_text(3) system call.

len_p The original len_p, exactly as passed to theacl_to_text(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = acl_to_text(acl, len_p);
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_acl_to_text(message, sizeof(message),
err, acl, len_p);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_acl_to_text_or_die(3) function.

SEE ALSO
acl_to_text(3)

convert an ACL to text

explain_acl_to_text_or_die(3)
convert an ACL to text and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

121

explain_acl_to_text_or_die(3) explain_acl_to_text_or_die(3)

NAME
explain_acl_to_text_or_die − convert an ACL to text and report errors

SYNOPSIS
#include <libexplain/acl_to_text.h>

char *explain_acl_to_text_or_die(acl_t acl, ssize_t *len_p);
char *explain_acl_to_text_on_error(acl_t acl, ssize_t *len_p);

DESCRIPTION
The explain_acl_to_text_or_diefunction is used to call theacl_to_text(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_to_text(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_acl_to_text_on_error function is used to call theacl_to_text(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_acl_to_text(3) function, but still returns to
the caller.

acl The acl, exactly as to be passed to theacl_to_text(3) system call.

len_p The len_p, exactly as to be passed to theacl_to_text(3) system call.

RETURN VALUE
Theexplain_acl_to_text_or_diefunction only returns on success, seeacl_to_text(3) for more information.
On failure, prints an explanation and exits, it does not return.

Theexplain_acl_to_text_on_errorfunction always returns the value return by the wrappedacl_to_text(3)
system call.

EXAMPLE
The explain_acl_to_text_or_diefunction is intended to be used in a fashion similar to the following
example:

char *result = explain_acl_to_text_or_die(acl, len_p);

SEE ALSO
acl_to_text(3)

convert an ACL to text

explain_acl_to_text(3)
explainacl_to_text(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

122

explain_adjtime(3) explain_adjtime(3)

NAME
explain_adjtime − explain adjtime(2) errors

SYNOPSIS
#include <libexplain/adjtime.h>

const char *explain_adjtime(const struct timeval * delta, struct timeval * olddelta);
const char *explain_errno_adjtime(int errnum, const struct timeval * delta, struct timeval * olddelta);
void explain_message_adjtime(char *message, int message_size, const struct timeval * delta, struct timeval
*olddelta);
void explain_message_errno_adjtime(char *message, int message_size, int errnum, const struct timeval
*delta, struct timeval * olddelta);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theadjtime(2) system call.

explain_adjtime
const char *explain_adjtime(const struct timeval * delta, struct timeval * olddelta);

The explain_adjtime function is used to obtain an explanation of an error returned by theadjtime(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

delta The original delta, exactly as passed to theadjtime(2) system call.

olddelta The original olddelta, exactly as passed to theadjtime(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)
{

fprintf(stderr, "%s\n", explain_adjtime(delta, olddelta));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_adjtime_or_die(3) function.

explain_errno_adjtime
const char *explain_errno_adjtime(int errnum, const struct timeval * delta, struct timeval * olddelta);

The explain_errno_adjtime function is used to obtain an explanation of an error returned by the
adjtime(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

delta The original delta, exactly as passed to theadjtime(2) system call.

olddelta The original olddelta, exactly as passed to theadjtime(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

123

explain_adjtime(3) explain_adjtime(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_adjtime(err, delta,
olddelta));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_adjtime_or_die(3) function.

explain_message_adjtime
void explain_message_adjtime(char *message, int message_size, const struct timeval * delta, struct timeval
*olddelta);

The explain_message_adjtimefunction is used to obtain an explanation of an error returned by the
adjtime(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

delta The original delta, exactly as passed to theadjtime(2) system call.

olddelta The original olddelta, exactly as passed to theadjtime(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)
{

char message[3000];
explain_message_adjtime(message, sizeof(message), delta,
olddelta);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_adjtime_or_die(3) function.

explain_message_errno_adjtime
void explain_message_errno_adjtime(char *message, int message_size, int errnum, const struct timeval
*delta, struct timeval * olddelta);

Theexplain_message_errno_adjtimefunction is used to obtain an explanation of an error returned by the
adjtime(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

delta The original delta, exactly as passed to theadjtime(2) system call.

124

explain_adjtime(3) explain_adjtime(3)

olddelta The original olddelta, exactly as passed to theadjtime(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (adjtime(delta, olddelta) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_adjtime(message, sizeof(message), err,
delta, olddelta);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_adjtime_or_die(3) function.

SEE ALSO
adjtime(2)

smoothly tune kernel clock

explain_adjtime_or_die(3)
smoothly tune kernel clock and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

125

explain_adjtime_or_die(3) explain_adjtime_or_die(3)

NAME
explain_adjtime_or_die − smoothly tune kernel clock and report errors

SYNOPSIS
#include <libexplain/adjtime.h>

void explain_adjtime_or_die(const struct timeval * delta, struct timeval * olddelta);
int explain_adjtime_on_error(const struct timeval * delta, struct timeval * olddelta);

DESCRIPTION
Theexplain_adjtime_or_die function is used to call theadjtime(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_adjtime(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_adjtime_on_error function is used to call theadjtime(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_adjtime(3) function, but still returns to the
caller.

delta The delta, exactly as to be passed to theadjtime(2) system call.

olddelta The olddelta, exactly as to be passed to theadjtime(2) system call.

RETURN VALUE
The explain_adjtime_or_die function only returns on success, seeadjtime(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_adjtime_on_error function always returns the value return by the wrappedadjtime(2) system
call.

EXAMPLE
Theexplain_adjtime_or_diefunction is intended to be used in a fashion similar to the following example:

explain_adjtime_or_die(delta, olddelta);

SEE ALSO
adjtime(2)

smoothly tune kernel clock

explain_adjtime(3)
explainadjtime(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

126

explain_adjtimex(3) explain_adjtimex(3)

NAME
explain_adjtimex − explain adjtimex(2) errors

SYNOPSIS
#include <libexplain/adjtimex.h>

const char *explain_adjtimex(struct timex *data);
const char *explain_errno_adjtimex(int errnum, struct timex *data);
void explain_message_adjtimex(char *message, int message_size, struct timex *data);
void explain_message_errno_adjtimex(char *message, int message_size, int errnum, struct timex *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theadjtimex(2) system call.

explain_adjtimex
const char *explain_adjtimex(struct timex *data);

The explain_adjtimex function is used to obtain an explanation of an error returned by theadjtimex(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to theadjtimex(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_adjtimex(data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_adjtimex_or_die(3) function.

explain_errno_adjtimex
const char *explain_errno_adjtimex(int errnum, struct timex *data);

The explain_errno_adjtimex function is used to obtain an explanation of an error returned by the
adjtimex(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to theadjtimex(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);

127

explain_adjtimex(3) explain_adjtimex(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_adjtimex(err, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_adjtimex_or_die(3) function.

explain_message_adjtimex
void explain_message_adjtimex(char *message, int message_size, struct timex *data);

The explain_message_adjtimexfunction is used to obtain an explanation of an error returned by the
adjtimex(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to theadjtimex(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)
{

char message[3000];
explain_message_adjtimex(message, sizeof(message), data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_adjtimex_or_die(3) function.

explain_message_errno_adjtimex
void explain_message_errno_adjtimex(char *message, int message_size, int errnum, struct timex *data);

The explain_message_errno_adjtimexfunction is used to obtain an explanation of an error returned by
the adjtimex(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to theadjtimex(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = adjtimex(data);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_adjtimex(message, sizeof(message), err,

128

explain_adjtimex(3) explain_adjtimex(3)

data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_adjtimex_or_die(3) function.

SEE ALSO
adjtimex(2)

tune kernel clock

explain_adjtimex_or_die(3)
tune kernel clock and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

129

explain_adjtimex_or_die(3) explain_adjtimex_or_die(3)

NAME
explain_adjtimex_or_die − tune kernel clock and report errors

SYNOPSIS
#include <libexplain/adjtimex.h>

int explain_adjtimex_or_die(struct timex *data);
int explain_adjtimex_on_error(struct timex *data);

DESCRIPTION
The explain_adjtimex_or_die function is used to call theadjtimex(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_adjtimex(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_adjtimex_on_error function is used to call theadjtimex(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_adjtimex(3) function, but still returns to the
caller.

data The data, exactly as to be passed to theadjtimex(2) system call.

RETURN VALUE
Theexplain_adjtimex_or_die function only returns on success, seeadjtimex(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_adjtimex_on_error function always returns the value return by the wrappedadjtimex(2)
system call.

EXAMPLE
The explain_adjtimex_or_die function is intended to be used in a fashion similar to the following
example:

int result = explain_adjtimex_or_die(data);

SEE ALSO
adjtimex(2)

tune kernel clock

explain_adjtimex(3)
explainadjtimex(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

130

explain_asprintf(3) explain_asprintf(3)

NAME
explain_asprintf − explainasprintf(3) errors

SYNOPSIS
#include <libexplain/asprintf.h>

const char *explain_asprintf(, ...);
const char *explain_errno_asprintf(int errnum, , ...);
void explain_message_asprintf(char *message, int message_size, , ...);
void explain_message_errno_asprintf(char *message, int message_size, int errnum, , ...);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theasprintf(3) system call.

explain_asprintf
const char *explain_asprintf(, ...);

The explain_asprintf function is used to obtain an explanation of an error returned by theasprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = asprintf();
if (result < 0 || errno != 0)
{

fprintf(stderr, "%s\n", explain_asprintf());
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_asprintf_or_die(3) function.

explain_errno_asprintf
const char *explain_errno_asprintf(int errnum, , ...);

The explain_errno_asprintf function is used to obtain an explanation of an error returned by the
asprintf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = asprintf();
if (result < 0 || errno != 0)

131

explain_asprintf(3) explain_asprintf(3)

{
int err = errno;

fprintf(stderr, "%s\n", explain_errno_asprintf(err,));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_asprintf_or_die(3) function.

explain_message_asprintf
void explain_message_asprintf(char *message, int message_size, , ...);

The explain_message_asprintffunction is used to obtain an explanation of an error returned by the
asprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = asprintf();
if (result < 0 || errno != 0)
{

char message[3000];
explain_message_asprintf(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_asprintf_or_die(3) function.

explain_message_errno_asprintf
void explain_message_errno_asprintf(char *message, int message_size, int errnum, , ...);

Theexplain_message_errno_asprintffunction is used to obtain an explanation of an error returned by the
asprintf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = asprintf();
if (result < 0 || errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_asprintf(message, sizeof(message), err,
);
fprintf(stderr, "%s\n", message);

132

explain_asprintf(3) explain_asprintf(3)

exit(EXIT_FAILURE);
}

The above code example is available pre−packaged as theexplain_asprintf_or_die(3) function.

SEE ALSO
asprintf(3)

print to allocated string

explain_asprintf_or_die(3)
print to allocated string and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

133

explain_asprintf_or_die(3) explain_asprintf_or_die(3)

NAME
explain_asprintf_or_die − print to allocated string and report errors

SYNOPSIS
#include <libexplain/asprintf.h>

int explain_asprintf_or_die(, ...);
int explain_asprintf_on_error(, ...);

DESCRIPTION
Theexplain_asprintf_or_die function is used to call theasprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_asprintf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_asprintf_on_error function is used to call theasprintf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_asprintf(3) function, but still returns to the
caller.

RETURN VALUE
The explain_asprintf_or_die function only returns on success, seeasprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_asprintf_on_error function always returns the value return by the wrappedasprintf(3)
system call.

EXAMPLE
Theexplain_asprintf_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_asprintf_or_die();

SEE ALSO
asprintf(3)

print to allocated string

explain_asprintf(3)
explainasprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

134

explain_bind(3) explain_bind(3)

NAME
explain_bind − explain bind(2) errors

SYNOPSIS
#include <libexplain/bind.h>

const char *explain_bind(int fildes, const struct sockaddr *sock_addr, int sock_addr_size);
const char *explain_errno_bind(int errnum, int fildes, const struct sockaddr *sock_addr, int
sock_addr_size);
void explain_message_bind(char *message, int message_size, int fildes, const struct sockaddr *sock_addr,
int sock_addr_size);
void explain_message_errno_bind(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *sock_addr, int sock_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thebind(2) system call.

explain_bind
const char *explain_bind(int fildes, const struct sockaddr *sock_addr, int sock_addr_size);

Theexplain_bind function is used to obtain an explanation of an error returned by thebind(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock_addr, sock_addr_size) < 0)
{

fprintf(stderr, "%s\n",
explain_bind(fildes, sock_addr, sock_addr_size));

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_bind_or_die(3) function.

fildes The original fildes, exactly as passed to thebind(2) system call.

sock_addr
The original sock_addr, exactly as passed to thebind(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thebind(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_bind
const char *explain_errno_bind(int errnum, int fildes, const struct sockaddr *sock_addr, int
sock_addr_size);

The explain_errno_bind function is used to obtain an explanation of an error returned by thebind(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock_addr, sock_addr_size) < 0)
{

int err = errno;

135

explain_bind(3) explain_bind(3)

fprintf(stderr, "%s\n", explain_errno_bind(err,
fildes, sock_addr, sock_addr_size));

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_bind_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thebind(2) system call.

sock_addr
The original sock_addr, exactly as passed to thebind(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thebind(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_bind
void explain_message_bind(char *message, int message_size, int fildes, const struct sockaddr *sock_addr,
int sock_addr_size);

The explain_message_bindfunction may be used to obtain an explanation of an error returned by the
bind(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock_addr, sock_addr_size) < 0)
{

char message[3000];
explain_message_bind(message, sizeof(message),

fildes, sock_addr, sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_bind_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thebind(2) system call.

sock_addr
The original sock_addr, exactly as passed to thebind(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thebind(2) system call.

explain_message_errno_bind
void explain_message_errno_bind(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *sock_addr, int sock_addr_size);

136

explain_bind(3) explain_bind(3)

The explain_message_errno_bindfunction may be used to obtain an explanation of an error returned by
the bind(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (bind(fildes, sock_addr, sock_addr_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_bind(message, sizeof(message), err,

fildes, sock_addr, sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_bind_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thebind(2) system call.

sock_addr
The original sock_addr, exactly as passed to thebind(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thebind(2) system call.

SEE ALSO
bind(2) bind a name to a socket

explain_bind_or_die(3)
bind a name to a socket and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

137

explain_bind_or_die(3) explain_bind_or_die(3)

NAME
explain_bind_or_die − bind a name to a socket and report errors

SYNOPSIS
#include <libexplain/bind.h>

void explain_bind_or_die(int fildes, const struct sockaddr *sock_addr, int sock_addr_size);

DESCRIPTION
Theexplain_bind_or_diefunction is used to call thebind(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_bind(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_bind_or_die(fildes, sock_addr, sock_addr_size);

fildes The fildes, exactly as to be passed to thebind(2) system call.

sock_addr
The sock_addr, exactly as to be passed to thebind(2) system call.

sock_addr_size
The sock_addr_size, exactly as to be passed to thebind(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
bind(2) bind a name to a socket

explain_bind(3)
explainbind(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

138

explain_calloc(3) explain_calloc(3)

NAME
explain_calloc − explaincalloc(3) errors

SYNOPSIS
#include <libexplain/calloc.h>

const char *explain_calloc(size_t nmemb, size_t size);
const char *explain_errno_calloc(int errnum, size_t nmemb, size_t size);
void explain_message_calloc(char *message, int message_size, size_t nmemb, size_t size);
void explain_message_errno_calloc(char *message, int message_size, int errnum, size_t nmemb, size_t
size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thecalloc(3) system call.

explain_calloc
const char *explain_calloc(size_t nmemb, size_t size);

The explain_calloc function is used to obtain an explanation of an error returned by thecalloc(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

nmemb The original nmemb, exactly as passed to thecalloc(3) system call.

size The original size, exactly as passed to thecalloc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void *result = calloc(nmemb, size);
if (!result && errno != 0)
{

fprintf(stderr, "%s\n", explain_calloc(nmemb, size));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_calloc_or_die(3) function.

explain_errno_calloc
const char *explain_errno_calloc(int errnum, size_t nmemb, size_t size);

The explain_errno_calloc function is used to obtain an explanation of an error returned by thecalloc(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nmemb The original nmemb, exactly as passed to thecalloc(3) system call.

size The original size, exactly as passed to thecalloc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

139

explain_calloc(3) explain_calloc(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void *result = calloc(nmemb, size);
if (!result && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_calloc(err, nmemb,
size));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_calloc_or_die(3) function.

explain_message_calloc
void explain_message_calloc(char *message, int message_size, size_t nmemb, size_t size);

Theexplain_message_callocfunction is used to obtain an explanation of an error returned by thecalloc(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nmemb The original nmemb, exactly as passed to thecalloc(3) system call.

size The original size, exactly as passed to thecalloc(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void *result = calloc(nmemb, size);
if (!result && errno != 0)
{

char message[3000];
explain_message_calloc(message, sizeof(message), nmemb, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_calloc_or_die(3) function.

explain_message_errno_calloc
void explain_message_errno_calloc(char *message, int message_size, int errnum, size_t nmemb, size_t
size);

The explain_message_errno_callocfunction is used to obtain an explanation of an error returned by the
calloc(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

140

explain_calloc(3) explain_calloc(3)

explained and this function, because many libc functions will alter the value oferrno.

nmemb The original nmemb, exactly as passed to thecalloc(3) system call.

size The original size, exactly as passed to thecalloc(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void *result = calloc(nmemb, size);
if (!result && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_calloc(message, sizeof(message), err,
nmemb, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_calloc_or_die(3) function.

SEE ALSO
calloc(3)

Allocate and clear memory

explain_calloc_or_die(3)
Allocate and clear memory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

141

explain_calloc_or_die(3) explain_calloc_or_die(3)

NAME
explain_calloc_or_die − Allocate and clear memory and report errors

SYNOPSIS
#include <libexplain/calloc.h>

void *explain_calloc_or_die(size_t nmemb, size_t size);
void *explain_calloc_on_error(size_t nmemb, size_t size);

DESCRIPTION
Theexplain_calloc_or_diefunction is used to call thecalloc(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_calloc(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_calloc_on_error function is used to call thecalloc(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_calloc(3) function, but still returns to the caller.

nmemb The nmemb, exactly as to be passed to thecalloc(3) system call.

size The size, exactly as to be passed to thecalloc(3) system call.

RETURN VALUE
The explain_calloc_or_die function only returns on success, seecalloc(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_calloc_on_error function always returns the value return by the wrappedcalloc(3) system
call.

EXAMPLE
Theexplain_calloc_or_diefunction is intended to be used in a fashion similar to the following example:

void *result = explain_calloc_or_die(nmemb, size);

SEE ALSO
calloc(3)

Allocate and clear memory

explain_calloc(3)
explaincalloc(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

142

explain_chdir(3) explain_chdir(3)

NAME
explain_chdir − explain chdir(2) errors

SYNOPSIS
#include <libexplain/chdir.h>
const char *explain_chdir(const char *pathname);
void explain_message_chdir(char *message, int message_size, const char *pathname);
const char *explain_errno_chdir(int errnum, const char *pathname);
void explain_message_errno_chdir(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These function may be used to obtain explanations ofchdir(2) errors.

explain_chdir
const char *explain_chdir(const char *pathname);

The explain_chdir function is used to obtain an explanation of an error returned by thechdir(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)
{

fprintf(stderr, ’%s0, explain_chdir(pathname));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thechdir(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_chdir
const char *explain_errno_chdir(int errnum, const char *pathname);

The explain_errno_chdir function is used to obtain an explanation of an error returned by thechdir(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_chdir(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thechdir(2) system call.

143

explain_chdir(3) explain_chdir(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_chdir
void explain_message_chdir(char *message, int message_size, const char *pathname);

The explain_message_chdir function is used to obtain an explanation of an error returned by thechdir(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)
{

char message[3000];
explain_message_chdir(message, sizeof(message), pathname);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thechdir(2) system call.

explain_message_errno_chdir
void explain_message_errno_chdir(char *message, int message_size, int errnum, const char * pathname);

The explain_message_errno_chdir function is used to obtain an explanation of an error returned by the
chdir(2) system call. The least the message will contain is the value ofstrerror(errnum) , but usually
it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chdir(pathname) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_chdir(message, sizeof(message), err,

pathname);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

144

explain_chdir(3) explain_chdir(3)

pathname
The original pathname, exactly as passed to thechdir(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

145

explain_chdir_or_die(3) explain_chdir_or_die(3)

NAME
explain_chdir_or_die − change working directory and report errors

SYNOPSIS
#include <libexplain/chdir.h>

void explain_chdir_or_die(const char * pathname);

DESCRIPTION
Theexplain_chdir_or_die function is used to call thechdir(2) system call. On failure an explanation will
be printed to stderr, obtained from explain_chdir(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_chdir_or_die(pathname);

pathname
The pathname, exactly as to be passed to thechdir(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

146

explain_chmod(3) explain_chmod(3)

NAME
explain_chmod − explain chmod(2) errors

SYNOPSIS
#include <libexplain/chmod.h>
const char *explain_chmod(const char *pathname, int mode);
const char *explain_errno_chmod(int errnum, const char *pathname, int mode);
void explain_message_chmod(char *message, int message_size, const char *pathname, int mode);
void explain_message_errno_chmod(char *message, int message_size, int errnum, const char *pathname,
int mode);

DESCRIPTION
These functions may be used to otain explanations forchmod(2) errors.

explain_chmod
const char *explain_chmod(const char *pathname, int mode);

The explain_chmod function is used to obtain an explanation of an error returned by thechmod(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname, mode) < 0)
{

fprintf(stderr, ’%s0, explain_chmod(pathname, mode));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thechmod(2) system call.

mode The original mode, exactly as passed to thechmod(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_chmod
const char *explain_errno_chmod(int errnum, const char *pathname, int mode);

The explain_errno_chmod function is used to obtain an explanation of an error returned by thechmod(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname) < 0)
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_chmod(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

147

explain_chmod(3) explain_chmod(3)

pathname
The original pathname, exactly as passed to thechmod(2) system call.

mode The original mode, exactly as passed to thechmod(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_chmod
void explain_message_chmod(char *message, int message_size, const char *pathname, int mode);

The explain_message_chmod function is used to obtain an explanation of an error returned by thechmod(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname, mode) < 0)
{

char message[3000];
explain_message_chmod(message, sizeof(message), pathname, mode);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thechmod(2) system call.

mode The original mode, exactly as passed to thechmod(2) system call.

explain_message_errno_chmod
void explain_message_errno_chmod(char * message, int message_size, int errnum, const char *pathname,
int mode);

The explain_message_errno_chmod function is used to obtain an explanation of an error returned by the
chmod(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chmod(pathname) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_chmod(message, sizeof(message), err,

pathname);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

148

explain_chmod(3) explain_chmod(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thechmod(2) system call.

mode The original mode, exactly as passed to thechmod(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

149

explain_chmod_or_die(3) explain_chmod_or_die(3)

NAME
explain_chmod_or_die − change permissions of a file and report errors

SYNOPSIS
#include <libexplain/chmod.h>
void explain_chmod_or_die(const char *pathname, int mode);

DESCRIPTION
The explain_chmod_or_die function is used to call thechmod(2) system call. On failure an explanation
wiil be printed to stderr, obtained fromexplain_chmod(3), and the the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_chmod_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed to thechmod(2) system call.

mode The mode, exactly as to be passed to thechmod(2) system call.

Returns: This function only returns on success.On failure, prints an explanation and
exit(EXIT_FAILURE)s.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

150

explain_chown(3) explain_chown(3)

NAME
explain_chown − explain chown(2) errors

SYNOPSIS
#include <libexplain/chown.h>

const char *explain_chown(const char *pathname, int owner, int group);
const char *explain_errno_chown(int errnum, const char *pathname, int owner, int group);
void explain_message_chown(char *message, int message_size, const char *pathname, int owner, int
group);
void explain_message_errno_chown(char *message, int message_size, int errnum, const char *pathname,
int owner, int group);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thechown(2) system call.

explain_chown
const char *explain_chown(const char *pathname, int owner, int group);

Theexplain_chownfunction is used to obtain an explanation of an error returned by thechown(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)
{

fprintf(stderr, "%s\n", explain_chown(pathname, owner, group));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thechown(2) system call.

owner The original owner, exactly as passed to thechown(2) system call.

group The original group, exactly as passed to thechown(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_chown
const char *explain_errno_chown(int errnum, const char *pathname, int owner, int group);

The explain_errno_chownfunction is used to obtain an explanation of an error returned by thechown(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_chown(err, pathname, owner,

group));
exit(EXIT_FAILURE);

}

151

explain_chown(3) explain_chown(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thechown(2) system call.

owner The original owner, exactly as passed to thechown(2) system call.

group The original group, exactly as passed to thechown(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_chown
void explain_message_chown(char *message, int message_size, const char *pathname, int owner, int
group);

The explain_message_chownfunction may be used to obtain an explanation of an error returned by the
chown(2) system call.The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)
{

char message[3000];
explain_message_chown(message, sizeof(message), pathname, owner, group);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thechown(2) system call.

owner The original owner, exactly as passed to thechown(2) system call.

group The original group, exactly as passed to thechown(2) system call.

explain_message_errno_chown
void explain_message_errno_chown(char *message, int message_size, int errnum, const char *pathname,
int owner, int group);

Theexplain_message_errno_chownfunction may be used to obtain an explanation of an error returned by
the chown(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (chown(pathname, owner, group) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_chown(message, sizeof(message), err,

pathname, owner, group);

152

explain_chown(3) explain_chown(3)

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thechown(2) system call.

owner The original owner, exactly as passed to thechown(2) system call.

group The original group, exactly as passed to thechown(2) system call.

SEE ALSO
chown(2)

change ownership of a file

explain_chown_or_die(3)
change ownership of a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

153

explain_chown_or_die(3) explain_chown_or_die(3)

NAME
explain_chown_or_die − change ownership of a file and report errors

SYNOPSIS
#include <libexplain/chown.h>

void explain_chown_or_die(const char *pathname, int owner, int group);

DESCRIPTION
The explain_chown_or_diefunction is used to call thechown(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_chown(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_chown_or_die(pathname, owner, group);

pathname
The pathname, exactly as to be passed to thechown(2) system call.

owner The owner, exactly as to be passed to thechown(2) system call.

group The group, exactly as to be passed to thechown(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
chown(2)

change ownership of a file

explain_chown(3)
explainchown(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

154

explain_chroot(3) explain_chroot(3)

NAME
explain_chroot − explain chroot(2) errors

SYNOPSIS
#include <libexplain/chroot.h>

const char *explain_chroot(const char *pathname);
const char *explain_errno_chroot(int errnum, const char *pathname);
void explain_message_chroot(char *message, int message_size, const char *pathname);
void explain_message_errno_chroot(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thechroot(2) system call.

explain_chroot
const char *explain_chroot(const char *pathname);

Theexplain_chroot function is used to obtain an explanation of an error returned by thechroot(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to thechroot(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)
{

fprintf(stderr, "%s\n", explain_chroot(pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_chroot_or_die(3) function.

explain_errno_chroot
const char *explain_errno_chroot(int errnum, const char *pathname);

The explain_errno_chroot function is used to obtain an explanation of an error returned by thechroot(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thechroot(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

155

explain_chroot(3) explain_chroot(3)

if (chroot(pathname) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_chroot(err, pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_chroot_or_die(3) function.

explain_message_chroot
void explain_message_chroot(char *message, int message_size, const char *pathname);

The explain_message_chrootfunction is used to obtain an explanation of an error returned by the
chroot(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thechroot(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)
{

char message[3000];
explain_message_chroot(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_chroot_or_die(3) function.

explain_message_errno_chroot
void explain_message_errno_chroot(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_chrootfunction is used to obtain an explanation of an error returned by the
chroot(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thechroot(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (chroot(pathname) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_chroot(message, sizeof(message), err,

156

explain_chroot(3) explain_chroot(3)

pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_chroot_or_die(3) function.

SEE ALSO
chroot(2)

change root directory

explain_chroot_or_die(3)
change root directory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

157

explain_chroot_or_die(3) explain_chroot_or_die(3)

NAME
explain_chroot_or_die − change root directory and report errors

SYNOPSIS
#include <libexplain/chroot.h>

void explain_chroot_or_die(const char *pathname);
int explain_chroot_on_error(const char *pathname))

DESCRIPTION
The explain_chroot_or_die function is used to call thechroot(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_chroot(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_chroot_on_error function is used to call thechroot(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_chroot(3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed to thechroot(2) system call.

RETURN VALUE
The explain_chroot_or_die function only returns on success, seechroot(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_chroot_on_error function always returns the value return by the wrappedchroot(2) system
call.

EXAMPLE
Theexplain_chroot_or_diefunction is intended to be used in a fashion similar to the following example:

explain_chroot_or_die(pathname);

SEE ALSO
chroot(2)

change root directory

explain_chroot(3)
explainchroot(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

158

explain_close(3) explain_close(3)

NAME
explain_close − explain close(2) errors

SYNOPSIS
#include <libexplain/close.h>

const char *explain_close(int fildes);
const char *explain_errno_close(int errnum, int fildes);
void explain_message_close(char *message, int message_size, int fildes);
void explain_message_errno_close(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theclose(2) system call.

explain_close
const char *explain_close(int fildes);

Theexplain_closefunction is used to obtain an explanation of an error returned by theclose(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)
{

fprintf(stderr, "%s\n", explain_close(fildes));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to theclose(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_close
const char *explain_errno_close(int errnum, int fildes);

The explain_errno_closefunction is used to obtain an explanation of an error returned by theclose(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_close(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theclose(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

159

explain_close(3) explain_close(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_close
void explain_message_close(char *message, int message_size, int fildes);

The explain_message_closefunction is used to obtain an explanation of an error returned by theclose(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)
{

char message[3000];
explain_message_close(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theclose(2) system call.

explain_message_errno_close
void explain_message_errno_close(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_closefunction is used to obtain an explanation of an error returned by the
close(2) system call. The least the message will contain is the value ofstrerror(errnum) , but usually
it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (close(fildes) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_close(message, sizeof(message), err, fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theclose(2) system call.

SEE ALSO
close close a file descriptor

explain_close_or_die
close a file descriptor and report errors

160

explain_close(3) explain_close(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

161

explain_closedir(3) explain_closedir(3)

NAME
explain_closedir − explain closedir(3) errors

SYNOPSIS
#include <libexplain/closedir.h>

const char *explain_closedir(DIR *dir);
const char *explain_errno_closedir(int errnum, DIR *dir);
void explain_message_closedir(char *message, int message_size, DIR *dir);
void explain_message_errno_closedir(char *message, int message_size, int errnum, DIR *dir);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theclosedir(3) system call.

explain_closedir
const char *explain_closedir(DIR *dir);

The explain_closedir function is used to obtain an explanation of an error returned by theclosedir(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)
{

fprintf(stderr, "%s\n", explain_closedir(dir));
exit(EXIT_FAILURE);

}

dir The original dir, exactly as passed to theclosedir(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_closedir
const char *explain_errno_closedir(int errnum, DIR *dir);

The explain_errno_closedir function is used to obtain an explanation of an error returned by the
closedir(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_closedir(err, dir));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dir The original dir, exactly as passed to theclosedir(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

162

explain_closedir(3) explain_closedir(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_closedir
void explain_message_closedir(char *message, int message_size, DIR *dir);

Theexplain_message_closedirfunction may be used to obtain an explanation of an error returned by the
closedir(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)
{

char message[3000];
explain_message_closedir(message, sizeof(message), dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

dir The original dir, exactly as passed to theclosedir(3) system call.

explain_message_errno_closedir
void explain_message_errno_closedir(char *message, int message_size, int errnum, DIR *dir);

The explain_message_errno_closedirfunction may be used to obtain an explanation of an error returned
by theclosedir(3) system call.The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (closedir(dir) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_closedir(message, sizeof(message), err, dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dir The original dir, exactly as passed to theclosedir(3) system call.

SEE ALSO
closedir(3)

close a directory

163

explain_closedir(3) explain_closedir(3)

explain_closedir_or_die(3)
close a directory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

164

explain_closedir_or_die(3) explain_closedir_or_die(3)

NAME
explain_closedir_or_die − close a directory and report errors

SYNOPSIS
#include <libexplain/closedir.h>

void explain_closedir_or_die(DIR *dir);

DESCRIPTION
Theexplain_closedir_or_diefunction is used to call theclosedir(3) system call.On failure an explanation
will be printed tostderr, obtained fromexplain_closedir(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_closedir_or_die(dir);

dir The dir, exactly as to be passed to theclosedir(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
closedir(3)

close a directory

explain_closedir(3)
explainclosedir(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

165

explain_close_or_die(3) explain_close_or_die(3)

NAME
explain_close_or_die − close a file descriptor and report errors

SYNOPSIS
#include <libexplain/close.h>

void explain_close_or_die(int fildes);

DESCRIPTION
Theexplain_close_or_diefunction is used to call theclose(2) system call. On failure an explanation will
be printed to stderr, obtained from explain_close(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_close_or_die(fildes);

fildes The fildes, exactly as to be passed to theclose(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
close(2) close a file descriptor

explain_close(3)
explainclose(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

166

explain_connect(3) explain_connect(3)

NAME
explain_connect − explain connect(2) errors

SYNOPSIS
#include <libexplain/connect.h>

const char *explain_connect(int fildes, const struct sockaddr *serv_addr, int serv_addr_size);
const char *explain_errno_connect(int errnum, int fildes, const struct sockaddr *serv_addr, int
serv_addr_size);
void explain_message_connect(char *message, int message_size, int fildes, const struct sockaddr
*serv_addr, int serv_addr_size);
void explain_message_errno_connect(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *serv_addr, int serv_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theconnect(2) system call.

explain_connect
const char *explain_connect(int fildes, const struct sockaddr *serv_addr, int serv_addr_size);

The explain_connect function is used to obtain an explanation of an error returned by theconnect(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)
{

fprintf(stderr, "%s\n", explain_connect(fildes, serv_addr,
serv_addr_size));

exit(EXIT_FAILURE);
}

fildes The original fildes, exactly as passed to theconnect(2) system call.

serv_addr
The original serv_addr, exactly as passed to theconnect(2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed to theconnect(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_connect
const char *explain_errno_connect(int errnum, int fildes, const struct sockaddr *serv_addr, int
serv_addr_size);

The explain_errno_connect function is used to obtain an explanation of an error returned by the
connect(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_connect(err,

fildes, serv_addr, serv_addr_size));

167

explain_connect(3) explain_connect(3)

exit(EXIT_FAILURE);
}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theconnect(2) system call.

serv_addr
The original serv_addr, exactly as passed to theconnect(2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed to theconnect(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_connect
void explain_message_connect(char *message, int message_size, int fildes, const struct sockaddr
*serv_addr, int serv_addr_size);

Theexplain_message_connectfunction may be used to obtain an explanation of an error returned by the
connect(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (connect(fildes, serv_addr, serv_addr_size) < 0)
{

char message[3000];
explain_message_connect(message, sizeof(message),

fildes, serv_addr, serv_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theconnect(2) system call.

serv_addr
The original serv_addr, exactly as passed to theconnect(2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed to theconnect(2) system call.

explain_message_errno_connect
void explain_message_errno_connect(char *message, int message_size, int errnum, int fildes, const struct
sockaddr *serv_addr, int serv_addr_size);

The explain_message_errno_connectfunction may be used to obtain an explanation of an error returned
by theconnect(2) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

168

explain_connect(3) explain_connect(3)

if (connect(fildes, serv_addr, serv_addr_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_connect(message, sizeof(message), err,

fildes, serv_addr, serv_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theconnect(2) system call.

serv_addr
The original serv_addr, exactly as passed to theconnect(2) system call.

serv_addr_size
The original serv_addr_size, exactly as passed to theconnect(2) system call.

SEE ALSO
connect(2)

initiate a connection on a socket

explain_connect_or_die(3)
initiate a connection on a socket and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

169

explain_connect_or_die(3) explain_connect_or_die(3)

NAME
explain_connect_or_die − initiate a connection on a socket and report errors

SYNOPSIS
#include <libexplain/connect.h>

void explain_connect_or_die(int fildes, const struct sockaddr *serv_addr, int serv_addr_size);

DESCRIPTION
Theexplain_connect_or_diefunction is used to call theconnect(2) system call.On failure an explanation
will be printed tostderr, obtained fromexplain_connect(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_connect_or_die(fildes, serv_addr, serv_addr_size);

fildes The fildes, exactly as to be passed to theconnect(2) system call.

serv_addr
The serv_addr, exactly as to be passed to theconnect(2) system call.

serv_addr_size
The serv_addr_size, exactly as to be passed to theconnect(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
connect(2)

initiate a connection on a socket

explain_connect(3)
explainconnect(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

170

explain_creat(3) explain_creat(3)

NAME
explain_creat − explain creat(2) errors

SYNOPSIS
#include <libexplain/creat.h>

const char *explain_creat(const char *pathname, int mode);
const char *explain_errno_creat(int errnum, const char *pathname, int mode);
void explain_message_creat(char *message, int message_size, const char *pathname, int mode);
void explain_message_errno_creat(char *message, int message_size, int errnum, const char *pathname, int
mode);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thecreat(2) system call.

explain_creat
const char *explain_creat(const char *pathname, int mode);

Theexplain_creatfunction is used to obtain an explanation of an error returned by thecreat(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)
{

fprintf(stderr, "%s\n", explain_creat(pathname, mode));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thecreat(2) system call.

mode The original mode, exactly as passed to thecreat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_creat
const char *explain_errno_creat(int errnum, const char *pathname, int mode);

The explain_errno_creat function is used to obtain an explanation of an error returned by thecreat(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_creat(err, pathname, mode));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

171

explain_creat(3) explain_creat(3)

pathname
The original pathname, exactly as passed to thecreat(2) system call.

mode The original mode, exactly as passed to thecreat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_creat
void explain_message_creat(char *message, int message_size, const char *pathname, int mode);

The explain_message_creatfunction may be used to obtain an explanation of an error returned by the
creat(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)
{

char message[3000];
explain_message_creat(message, sizeof(message), pathname, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thecreat(2) system call.

mode The original mode, exactly as passed to thecreat(2) system call.

explain_message_errno_creat
void explain_message_errno_creat(char *message, int message_size, int errnum, const char *pathname, int
mode);

Theexplain_message_errno_creatfunction may be used to obtain an explanation of an error returned by
the creat(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (creat(pathname, mode) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_creat(message, sizeof(message), err, pathname,

mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

172

explain_creat(3) explain_creat(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thecreat(2) system call.

mode The original mode, exactly as passed to thecreat(2) system call.

SEE ALSO
creat(2) open and possibly create a file or device

explain_creat_or_die(3)
create and open a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

173

explain_creat_or_die(3) explain_creat_or_die(3)

NAME
explain_creat_or_die − create and open a file creat and report errors

SYNOPSIS
#include <libexplain/creat.h>

void explain_creat_or_die(const char *pathname, int mode);

DESCRIPTION
Theexplain_creat_or_diefunction is used to call thecreat(2) system call.On failure an explanation will
be printed to stderr, obtained from explain_creat(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_creat_or_die(pathname, mode);

pathname
The pathname, exactly as to be passed to thecreat(2) system call.

mode The mode, exactly as to be passed to thecreat(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
creat(2) open and possibly create a file or device

explain_creat(3)
explaincreat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

174

explain_dirfd(3) explain_dirfd(3)

NAME
explain_dirfd − explain dirfd(3) errors

SYNOPSIS
#include <libexplain/dirfd.h>

const char *explain_dirfd(DIR *dir);
const char *explain_errno_dirfd(int errnum, DIR *dir);
void explain_message_dirfd(char *message, int message_size, DIR *dir);
void explain_message_errno_dirfd(char *message, int message_size, int errnum, DIR *dir);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thedirfd(3) system call.

explain_dirfd
const char *explain_dirfd(DIR *dir);

Theexplain_dirfd function is used to obtain an explanation of an error returned by thedirfd(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

dir The original dir, exactly as passed to thedirfd(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_dirfd(dir));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_dirfd_or_die(3) function.

explain_errno_dirfd
const char *explain_errno_dirfd(int errnum, DIR *dir);

The explain_errno_dirfd function is used to obtain an explanation of an error returned by thedirfd(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dir The original dir, exactly as passed to thedirfd(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);

175

explain_dirfd(3) explain_dirfd(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_dirfd(err, dir));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_dirfd_or_die(3) function.

explain_message_dirfd
void explain_message_dirfd(char *message, int message_size, DIR *dir);

The explain_message_dirfdfunction is used to obtain an explanation of an error returned by thedirfd(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

dir The original dir, exactly as passed to thedirfd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)
{

char message[3000];
explain_message_dirfd(message, sizeof(message), dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_dirfd_or_die(3) function.

explain_message_errno_dirfd
void explain_message_errno_dirfd(char *message, int message_size, int errnum, DIR *dir);

The explain_message_errno_dirfdfunction is used to obtain an explanation of an error returned by the
dirfd(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dir The original dir, exactly as passed to thedirfd(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = dirfd(dir);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_dirfd(message, sizeof(message), err,

176

explain_dirfd(3) explain_dirfd(3)

dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_dirfd_or_die(3) function.

SEE ALSO
dirfd(3) get directory stream file descriptor

explain_dirfd_or_die(3)
get directory stream file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

177

explain_dirfd_or_die(3) explain_dirfd_or_die(3)

NAME
explain_dirfd_or_die − get directory stream file descriptor and report errors

SYNOPSIS
#include <libexplain/dirfd.h>

int explain_dirfd_or_die(DIR *dir);
int explain_dirfd_on_error(DIR *dir);

DESCRIPTION
The explain_dirfd_or_die function is used to call thedirfd(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_dirfd(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_dirfd_on_error function is used to call thedirfd(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_dirfd(3) function, but still returns to the caller.

dir The dir, exactly as to be passed to thedirfd(3) system call.

RETURN VALUE
Theexplain_dirfd_or_die function only returns on success, seedirfd(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_dirfd_on_error function always returns the value return by the wrappeddirfd(3) system call.

EXAMPLE
Theexplain_dirfd_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_dirfd_or_die(dir);

SEE ALSO
dirfd(3) get directory stream file descriptor

explain_dirfd(3)
explaindirfd(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

178

explain_dup2(3) explain_dup2(3)

NAME
explain_dup2 − explain dup2(2) errors

SYNOPSIS
#include <libexplain/dup2.h>

const char *explain_dup2(int oldfd, int newfd);
const char *explain_errno_dup2(int errnum, int oldfd, int newfd);
void explain_message_dup2(char *message, int message_size, int oldfd, int newfd);
void explain_message_errno_dup2(char *message, int message_size, int errnum, int oldfd, int newfd);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thedup2(2) system call.

explain_dup2
const char *explain_dup2(int oldfd, int newfd);

The explain_dup2 function is used to obtain an explanation of an error returned by thedup2(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)
{

fprintf(stderr, "%s\n", explain_dup2(oldfd, newfd));
exit(EXIT_FAILURE);

}

oldfd The original oldfd, exactly as passed to thedup2(2) system call.

newfd The original newfd, exactly as passed to thedup2(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_dup2
const char *explain_errno_dup2(int errnum, int oldfd, int newfd);

The explain_errno_dup2 function is used to obtain an explanation of an error returned by thedup2(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_dup2(err, oldfd, newfd));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

oldfd The original oldfd, exactly as passed to thedup2(2) system call.

newfd The original newfd, exactly as passed to thedup2(2) system call.

179

explain_dup2(3) explain_dup2(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_dup2
void explain_message_dup2(char *message, int message_size, int oldfd, int newfd);

The explain_message_dup2function may be used to obtain an explanation of an error returned by the
dup2(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)
{

char message[3000];
explain_message_dup2(message, sizeof(message), oldfd, newfd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

oldfd The original oldfd, exactly as passed to thedup2(2) system call.

newfd The original newfd, exactly as passed to thedup2(2) system call.

explain_message_errno_dup2
void explain_message_errno_dup2(char *message, int message_size, int errnum, int oldfd, int newfd);

Theexplain_message_errno_dup2function may be used to obtain an explanation of an error returned by
the dup2(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup2(oldfd, newfd) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_dup2(message, sizeof(message), err, oldfd, newfd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

oldfd The original oldfd, exactly as passed to thedup2(2) system call.

180

explain_dup2(3) explain_dup2(3)

newfd The original newfd, exactly as passed to thedup2(2) system call.

SEE ALSO
dup2(2) duplicate a file descriptor

explain_dup2_or_die(3)
duplicate a file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

181

explain_dup2_or_die(3) explain_dup2_or_die(3)

NAME
explain_dup2_or_die − duplicate a file descriptor and report errors

SYNOPSIS
#include <libexplain/dup2.h>

void explain_dup2_or_die(int oldfd, int newfd);

DESCRIPTION
Theexplain_dup2_or_diefunction is used to call thedup2(2) system call. On failure an explanation will
be printed to stderr, obtained from explain_dup2(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_dup2_or_die(oldfd, newfd);

oldfd The oldfd, exactly as to be passed to thedup2(2) system call.

newfd The newfd, exactly as to be passed to thedup2(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
dup2(2) duplicate a file descriptor

explain_dup2(3)
explaindup2(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

182

explain_dup(3) explain_dup(3)

NAME
explain_dup − explain dup(2) errors

SYNOPSIS
#include <libexplain/dup.h>

const char *explain_dup(int fildes);
const char *explain_errno_dup(int errnum, int fildes);
void explain_message_dup(char *message, int message_size, int fildes);
void explain_message_errno_dup(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thedup(2) system call.

explain_dup
const char *explain_dup(int fildes);

The explain_dup function is used to obtain an explanation of an error returned by thedup(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)
{

fprintf(stderr, "%s\n", explain_dup(fildes));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to thedup(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_dup
const char *explain_errno_dup(int errnum, int fildes);

Theexplain_errno_dup function is used to obtain an explanation of an error returned by thedup(2) system
call. Theleast the message will contain is the value ofstrerror(errnum) , but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_dup(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thedup(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

183

explain_dup(3) explain_dup(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_dup
void explain_message_dup(char *message, int message_size, int fildes);

The explain_message_dupfunction may be used toobtain an explanation of an error returned by the
dup(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)
{

char message[3000];
explain_message_dup(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thedup(2) system call.

explain_message_errno_dup
void explain_message_errno_dup(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_dupfunction may be used to obtain an explanation of an error returned by
the dup(2) system call. The least the message will contain is the value of strerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (dup(fildes) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_dup(message, sizeof(message), err, fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thedup(2) system call.

SEE ALSO
dup(2) duplicate a file descriptor

explain_dup_or_die(3)
duplicate a file descriptor and report errors

184

explain_dup(3) explain_dup(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

185

explain_dup_or_die(3) explain_dup_or_die(3)

NAME
explain_dup_or_die − duplicate a file descriptor and report errors

SYNOPSIS
#include <libexplain/dup.h>

void explain_dup_or_die(int fildes);

DESCRIPTION
Theexplain_dup_or_diefunction is used to call thedup(2) system call.On failure an explanation will be
printed to stderr, obtained from explain_dup(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_dup_or_die(fildes);

fildes The fildes, exactly as to be passed to thedup(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
dup(2) duplicate a file descriptor

explain_dup(3)
explaindup(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

186

explain_endgrent(3) explain_endgrent(3)

NAME
explain_endgrent − explainendgrent(3) errors

SYNOPSIS
#include <libexplain/endgrent.h>

const char *explain_endgrent(void);
const char *explain_errno_endgrent(int errnum, void);
void explain_message_endgrent(char *message, int message_size, void);
void explain_message_errno_endgrent(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theendgrent(3) system call.

explain_endgrent
const char *explain_endgrent(void);

The explain_endgrent function is used to obtain an explanation of an error returned by theendgrent(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = endgrent();
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_endgrent());
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_endgrent_or_die(3) function.

explain_errno_endgrent
const char *explain_errno_endgrent(int errnum, void);

The explain_errno_endgrent function is used to obtain an explanation of an error returned by the
endgrent(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = endgrent();
if (result < 0 && errno != 0)

187

explain_endgrent(3) explain_endgrent(3)

{
int err = errno;

fprintf(stderr, "%s\n", explain_errno_endgrent(err,));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_endgrent_or_die(3) function.

explain_message_endgrent
void explain_message_endgrent(char *message, int message_size, void);

The explain_message_endgrentfunction is used to obtain an explanation of an error returned by the
endgrent(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = endgrent();
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_endgrent(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_endgrent_or_die(3) function.

explain_message_errno_endgrent
void explain_message_errno_endgrent(char *message, int message_size, int errnum, void);

The explain_message_errno_endgrentfunction is used to obtain an explanation of an error returned by
the endgrent(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = endgrent();
if (result < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_endgrent(message, sizeof(message), err,
);
fprintf(stderr, "%s\n", message);

188

explain_endgrent(3) explain_endgrent(3)

exit(EXIT_FAILURE);
}

The above code example is available pre−packaged as theexplain_endgrent_or_die(3) function.

SEE ALSO
endgrent(3)

finish group file accesses

explain_endgrent_or_die(3)
finish group file accesses and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

189

explain_endgrent_or_die(3) explain_endgrent_or_die(3)

NAME
explain_endgrent_or_die − finish group file accesses and report errors

SYNOPSIS
#include <libexplain/endgrent.h>

void explain_endgrent_or_die(void);
void explain_endgrent_on_error(void);

DESCRIPTION
The explain_endgrent_or_die function is used to call theendgrent(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_endgrent(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_endgrent_on_error function is used to call theendgrent(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_endgrent(3) function, but still returns to the
caller.

RETURN VALUE
Theexplain_endgrent_or_diefunction only returns on success, seeendgrent(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_endgrent_on_error function always returns the value return by the wrappedendgrent(3)
system call.

EXAMPLE
The explain_endgrent_or_die function is intended to be used in a fashion similar to the following
example:

explain_endgrent_or_die();

SEE ALSO
endgrent(3)

finish group file accesses

explain_endgrent(3)
explainendgrent(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

190

explain_eventfd(3) explain_eventfd(3)

NAME
explain_eventfd − explain eventfd(2) errors

SYNOPSIS
#include <libexplain/eventfd.h>

const char *explain_eventfd(unsigned int initval, int flags);
const char *explain_errno_eventfd(int errnum, unsigned int initval, int flags);
void explain_message_eventfd(char *message, int message_size, unsigned int initval, int flags);
void explain_message_errno_eventfd(char *message, int message_size, int errnum, unsigned int initval, int
flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theeventfd(2) system call.

explain_eventfd
const char *explain_eventfd(unsigned int initval, int flags);

Theexplain_eventfd function is used to obtain an explanation of an error returned by theeventfd(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

initval The original initval, exactly as passed to theeventfd(2) system call.

flags The original flags, exactly as passed to theeventfd(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_eventfd(initval, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_eventfd_or_die(3) function.

explain_errno_eventfd
const char *explain_errno_eventfd(int errnum, unsigned int initval, int flags);

Theexplain_errno_eventfd function is used to obtain an explanation of an error returned by theeventfd(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

initval The original initval, exactly as passed to theeventfd(2) system call.

flags The original flags, exactly as passed to theeventfd(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

191

explain_eventfd(3) explain_eventfd(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_eventfd(err, initval,
flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_eventfd_or_die(3) function.

explain_message_eventfd
void explain_message_eventfd(char *message, int message_size, unsigned int initval, int flags);

The explain_message_eventfd function is used to obtain an explanation of an error returned by the
eventfd(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

initval The original initval, exactly as passed to theeventfd(2) system call.

flags The original flags, exactly as passed to theeventfd(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)
{

char message[3000];
explain_message_eventfd(message, sizeof(message), initval,
flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_eventfd_or_die(3) function.

explain_message_errno_eventfd
void explain_message_errno_eventfd(char *message, int message_size, int errnum, unsigned int initval, int
flags);

Theexplain_message_errno_eventfd function is used to obtain an explanation of an error returned by the
eventfd(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

192

explain_eventfd(3) explain_eventfd(3)

initval The original initval, exactly as passed to theeventfd(2) system call.

flags The original flags, exactly as passed to theeventfd(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = eventfd(initval, flags);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_eventfd(message, sizeof(message), err,
initval, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_eventfd_or_die(3) function.

SEE ALSO
eventfd(2)

create a file descriptor for event notification

explain_eventfd_or_die(3)
create a file descriptor for event notification and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

193

explain_eventfd_or_die(3) explain_eventfd_or_die(3)

NAME
explain_eventfd_or_die − create event notify file descriptor and report errors

SYNOPSIS
#include <libexplain/eventfd.h>

int explain_eventfd_or_die(unsigned int initval, int flags);
int explain_eventfd_on_error(unsigned int initval, int flags);

DESCRIPTION
The explain_eventfd_or_die function is used to call theeventfd(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_eventfd(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_eventfd_on_error function is used to call theeventfd(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_eventfd(3) function, but still returns to the
caller.

initval The initval, exactly as to be passed to theeventfd(2) system call.

flags The flags, exactly as to be passed to theeventfd(2) system call.

RETURN VALUE
The explain_eventfd_or_die function only returns on success, seeeventfd(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_eventfd_on_error function always returns the value return by the wrappedeventfd(2) system
call.

EXAMPLE
Theexplain_eventfd_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_eventfd_or_die(initval, flags);

SEE ALSO
eventfd(2)

create a file descriptor for event notification

explain_eventfd(3)
explaineventfd(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

194

explain_execlp(3) explain_execlp(3)

NAME
explain_execlp − explainexeclp(3) errors

SYNOPSIS
#include <libexplain/execlp.h>

const char *explain_execlp(, ...);
const char *explain_errno_execlp(int errnum, , ...);
void explain_message_execlp(char *message, int message_size, , ...);
void explain_message_errno_execlp(char *message, int message_size, int errnum, , ...);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theexeclp(3) system call.

explain_execlp
const char *explain_execlp(, ...);

Theexplain_execlpfunction is used to obtain an explanation of an error returned by theexeclp(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{

fprintf(stderr, "%s\n", explain_execlp());
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_execlp_or_die(3) function.

explain_errno_execlp
const char *explain_errno_execlp(int errnum, , ...);

The explain_errno_execlpfunction is used to obtain an explanation of an error returned by theexeclp(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_execlp(err,));
exit(EXIT_FAILURE);

195

explain_execlp(3) explain_execlp(3)

}

The above code example is available pre-packaged as theexplain_execlp_or_die(3) function.

explain_message_execlp
void explain_message_execlp(char *message, int message_size, , ...);

The explain_message_execlpfunction is used to obtain an explanation of an error returned by the
execlp(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{

char message[3000];
explain_message_execlp(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_execlp_or_die(3) function.

explain_message_errno_execlp
void explain_message_errno_execlp(char *message, int message_size, int errnum, , ...);

The explain_message_errno_execlpfunction is used to obtain an explanation of an error returned by the
execlp(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
if (execlp() < 0)
{

int err = errno;
char message[3000];

explain_message_errno_execlp(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_execlp_or_die(3) function.

SEE ALSO
execlp(3)

execute a file

196

explain_execlp(3) explain_execlp(3)

explain_execlp_or_die(3)
execute a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

197

explain_execlp_or_die(3) explain_execlp_or_die(3)

NAME
explain_execlp_or_die − execute a file and report errors

SYNOPSIS
#include <libexplain/execlp.h>

void explain_execlp_or_die(, ...);
int explain_execlp_on_error(, ...);

DESCRIPTION
The explain_execlp_or_diefunction is used to call theexeclp(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_execlp(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_execlp_on_errorfunction is used to call theexeclp(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_execlp(3) function, but still returns to the caller.

RETURN VALUE
The explain_execlp_or_diefunction only returns on success, seeexeclp(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_execlp_on_errorfunction always returns the value return by the wrappedexeclp(3) system
call.

EXAMPLE
Theexplain_execlp_or_diefunction is intended to be used in a fashion similar to the following example:

explain_execlp_or_die();

SEE ALSO
execlp(3)

execute a file

explain_execlp(3)
explainexeclp(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

198

explain_execv(3) explain_execv(3)

NAME
explain_execv − explainexecv(3) errors

SYNOPSIS
#include <libexplain/execv.h>

const char *explain_execv(const char *pathname, char *const*argv);
const char *explain_errno_execv(int errnum, const char *pathname, char *const*argv);
void explain_message_execv(char *message, int message_size, const char *pathname, char *const*argv);
void explain_message_errno_execv(char *message, int message_size, int errnum, const char *pathname,
char *const*argv);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theexecv(3) system call.

explain_execv
const char *explain_execv(const char *pathname, char *const*argv);

The explain_execvfunction is used to obtain an explanation of an error returned by theexecv(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to theexecv(3) system call.

argv The original argv, exactly as passed to theexecv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)
{

fprintf(stderr, "%s\n", explain_execv(pathname, argv));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_execv_or_die(3) function.

explain_errno_execv
const char *explain_errno_execv(int errnum, const char *pathname, char *const*argv);

The explain_errno_execvfunction is used to obtain an explanation of an error returned by theexecv(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theexecv(3) system call.

argv The original argv, exactly as passed to theexecv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

199

explain_execv(3) explain_execv(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_execv(err, pathname,
argv));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_execv_or_die(3) function.

explain_message_execv
void explain_message_execv(char *message, int message_size, const char *pathname, char *const*argv);

Theexplain_message_execvfunction is used to obtain an explanation of an error returned by theexecv(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theexecv(3) system call.

argv The original argv, exactly as passed to theexecv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)
{

char message[3000];
explain_message_execv(message, sizeof(message), pathname,
argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_execv_or_die(3) function.

explain_message_errno_execv
void explain_message_errno_execv(char *message, int message_size, int errnum, const char *pathname,
char *const*argv);

The explain_message_errno_execvfunction is used to obtain an explanation of an error returned by the
execv(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

200

explain_execv(3) explain_execv(3)

pathname
The original pathname, exactly as passed to theexecv(3) system call.

argv The original argv, exactly as passed to theexecv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (execv(pathname, argv) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_execv(message, sizeof(message), err,
pathname, argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_execv_or_die(3) function.

SEE ALSO
execv(3) execute a file

explain_execv_or_die(3)
execute a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

201

explain_execve(3) explain_execve(3)

NAME
explain_execve − explain execve(2) errors

SYNOPSIS
#include <libexplain/execve.h>

const char *explain_execve(const char *pathname, const char *const *argv, const char *const *envp);
const char *explain_errno_execve(int errnum, const char *pathname, const char *const *argv, const char
*const *envp);
void explain_message_execve(char *message, int message_size, const char *pathname, const char *const
*argv, const char *const *envp);
void explain_message_errno_execve(char *message, int message_size, int errnum, const char *pathname,
const char *const *argv, const char *const *envp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theexecve(2) system call.

explain_execve
const char *explain_execve(const char *pathname, const char *const *argv, const char *const *envp);

Theexplain_execvefunction is used to obtain an explanation of an error returned by theexecve(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
fprintf(stderr, "%s\n", explain_execve(pathname, argv, envp));
exit(EXIT_FAILURE);

pathname
The original pathname, exactly as passed to theexecve(2) system call.

argv The original argv, exactly as passed to theexecve(2) system call.

envp The original envp, exactly as passed to theexecve(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_execve
const char *explain_errno_execve(int errnum, const char *pathname, const char *const *argv, const char
*const *envp);

Theexplain_errno_execvefunction is used to obtain an explanation of an error returned by theexecve(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
int err = errno;
fprintf(stderr, "%s\n", explain_errno_execve(err, pathname, argv, envp));
exit(EXIT_FAILURE);

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

202

explain_execve(3) explain_execve(3)

pathname
The original pathname, exactly as passed to theexecve(2) system call.

argv The original argv, exactly as passed to theexecve(2) system call.

envp The original envp, exactly as passed to theexecve(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_execve
void explain_message_execve(char *message, int message_size, const char *pathname, const char *const
*argv, const char *const *envp);

The explain_message_execvefunction may be used toobtain an explanation of an error returned by the
execve(2) system call.The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
char message[3000];
explain_message_execve(message, sizeof(message), pathname, argv, envp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theexecve(2) system call.

argv The original argv, exactly as passed to theexecve(2) system call.

envp The original envp, exactly as passed to theexecve(2) system call.

explain_message_errno_execve
void explain_message_errno_execve(char *message, int message_size, int errnum, const char *pathname,
const char *const *argv, const char *const *envp);

Theexplain_message_errno_execvefunction may be used to obtain an explanation of an error returned by
the execve(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
execve(pathname, argv, envp);
int err = errno;
char message[3000];
explain_message_errno_execve(message, sizeof(message), err,

pathname, argv, envp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

203

explain_execve(3) explain_execve(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theexecve(2) system call.

argv The original argv, exactly as passed to theexecve(2) system call.

envp The original envp, exactly as passed to theexecve(2) system call.

SEE ALSO
execve(2)

execute program

explain_execve_or_die(3)
execute program and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

204

explain_execve_or_die(3) explain_execve_or_die(3)

NAME
explain_execve_or_die − execute program and report errors

SYNOPSIS
#include <libexplain/execve.h>

void explain_execve_or_die(const char *pathname, const char *const *argv, const char *const *envp);

DESCRIPTION
The explain_execve_or_diefunction is used to call theexecve(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_execve(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_execve_or_die(pathname, argv, envp);

pathname
The pathname, exactly as to be passed to theexecve(2) system call.

argv The argv, exactly as to be passed to theexecve(2) system call.

envp The envp, exactly as to be passed to theexecve(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
execve(2)

execute program

explain_execve(3)
explainexecve(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

205

explain_execv_or_die(3) explain_execv_or_die(3)

NAME
explain_execv_or_die − execute a file and report errors

SYNOPSIS
#include <libexplain/execv.h>

void explain_execv_or_die(const char *pathname, char *const*argv);
int explain_execv_on_error(const char *pathname, char *const*argv);

DESCRIPTION
Theexplain_execv_or_diefunction is used to call theexecv(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_execv(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_execv_on_errorfunction is used to call theexecv(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_execv(3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed to theexecv(3) system call.

argv The argv, exactly as to be passed to theexecv(3) system call.

RETURN VALUE
Theexplain_execv_or_diefunction only returns on success, seeexecv(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_execv_on_errorfunction always returns the value return by the wrappedexecv(3) system call.

EXAMPLE
Theexplain_execv_or_diefunction is intended to be used in a fashion similar to the following example:

explain_execv_or_die(pathname, argv);

SEE ALSO
execv(3) execute a file

explain_execv(3)
explainexecv(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

206

explain_execvp(3) explain_execvp(3)

NAME
explain_execvp − explain execvp(3) errors

SYNOPSIS
#include <libexplain/execvp.h>

const char *explain_execvp(const char *pathname, char *const *argv);
const char *explain_errno_execvp(int errnum, const char *pathname, char *const *argv);
void explain_message_execvp(char *message, int message_size, const char *pathname, char *const *argv);
void explain_message_errno_execvp(char *message, int message_size, int errnum, const char *pathname,
char *const *argv);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theexecvp(3) system call.

explain_execvp
const char *explain_execvp(const char *pathname, char *const *argv);

Theexplain_execvpfunction is used to obtain an explanation of an error returned by theexecvp(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)
{

fprintf(stderr, "%s\n", explain_execvp(pathname, argv));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_execvp_or_die(3) function.

pathname
The original pathname, exactly as passed to theexecvp(3) system call.

argv The original argv, exactly as passed to theexecvp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_execvp
const char *explain_errno_execvp(int errnum, const char *pathname, char *const *argv);

Theexplain_errno_execvpfunction is used to obtain an explanation of an error returned by theexecvp(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_execvp(err,

pathname, argv));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_execvp_or_die(3) function.

207

explain_execvp(3) explain_execvp(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theexecvp(3) system call.

argv The original argv, exactly as passed to theexecvp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_execvp
void explain_message_execvp(char *message, int message_size, const char *pathname, char *const *argv);

The explain_message_execvpfunction may be used to obtain an explanation of an error returned by the
execvp(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)
{

char message[3000];
explain_message_execvp(message, sizeof(message), pathname, argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_execvp_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theexecvp(3) system call.

argv The original argv, exactly as passed to theexecvp(3) system call.

explain_message_errno_execvp
void explain_message_errno_execvp(char *message, int message_size, int errnum, const char *pathname,
char *const *argv);

Theexplain_message_errno_execvpfunction may be used to obtain an explanation of an error returned by
the execvp(3) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (execvp(pathname, argv) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_execvp(message, sizeof(message),

err, pathname, argv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

208

explain_execvp(3) explain_execvp(3)

}

The above code example is available pre-packaged as theexplain_execvp_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theexecvp(3) system call.

argv The original argv, exactly as passed to theexecvp(3) system call.

SEE ALSO
execvp(3)

execute a file

explain_execvp_or_die(3)
execute a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

209

explain_execvp_or_die(3) explain_execvp_or_die(3)

NAME
explain_execvp_or_die − execute a file and report errors

SYNOPSIS
#include <libexplain/execvp.h>

void explain_execvp_or_die(const char *pathname, char *const *argv);

DESCRIPTION
The explain_execvp_or_diefunction is used to call theexecvp(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_execvp(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_execvp_or_die(pathname, argv);

pathname
The pathname, exactly as to be passed to theexecvp(3) system call.

argv The argv, exactly as to be passed to theexecvp(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
execvp(3)

execute a file

explain_execvp(3)
explainexecvp(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

210

explain_exit(3) explain_exit(3)

NAME
explain_exit − print an explanation of exit status before exiting

SYNOPSIS
#include <libexplain/libexplain.h>

void explain_exit_on_exit(void);
void explain_exit_on_error(void);
void explain_exit_cancel(void);

DESCRIPTION
Theexplain_exit_on_exitfunction may be used to have the calling program print an explanation of its exit
status (the value passed toexit(3) or the return value frommain) immediately before it terminates.

Theexplain_exit_on_errorfunction may be used to have the calling program print an explanation of its exit
status immediately before it terminates, if that exit status is not EXIT_SUCCESS.

The explain_exit_cancelfunction may be used to cancel the effect of theexplain_exit_on_exitor
explain_exit_on_errorfunction.

These functions may be called multiple times, and in any order. The last called has precedence.The
explanation will never be printed more than once.

Call Exit As Normal
In order to have the explanation printed, simply callexit(3) as normal, or return frommainas normal.Do
not call any of these functions in order to exit your program, they are called before you exit your program.

Caveat
This functionality is only available on systems with theon_exit(3) system call.Unfortunately, theatexit(3)
system call is not sufficiently capable, as it does not pass the exit status to the registered function.

SEE ALSO
exit(3) cause normal process termination

atexit(3) register a function to be called at normal process termination

on_exit(3)
register a function to be called at normal process termination

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

211

explain_fchdir(3) explain_fchdir(3)

NAME
explain_fchdir − explain fchdir(2) errors

SYNOPSIS
#include <libexplain/fchdir.h>
const char *explain_fchdir(int fildes);
void explain_message_fchdir(char *message, int message_size, int fildes);
const char *explain_errno_fchdir(int errnum, int fildes);
void explain_message_errno_fchdir(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations forfchdir(2) errors.

explain_fchdir
const char *explain_fchdir(int fildes);

The explain_fchdir function is used to obtain an explanation of an error returned by thefchdir(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{

fprintf(stderr, ’%s0, explain_fchdir(fildes));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to thefchdir(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fchdir
const char *explain_errno_fchdir(int errnum, int fildes);

The explain_errno_fchdir function is used to obtain an explanation of an error returned by thefchdir(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_fchdir(err, fildes));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefchdir(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

212

explain_fchdir(3) explain_fchdir(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fchdir
void explain_message_fchdir(char *message, int message_size, int fildes);

The explain_message_fchdir function is used to obtain an explanation of an error returned by thefchdir(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{

char message[3000];
explain_message_fchdir(message, sizeof(message), fildes);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefchdir(2) system call.

explain_message_errno_fchdir
void explain_message_errno_fchdir(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fchdir function is used to obtain an explanation of an error returned by the
fchdir(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchdir(fildes) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fchdir(message, sizeof(message), err,

fildes);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefchdir(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

213

explain_fchdir(3) explain_fchdir(3)

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

214

explain_fchdir_or_die(3) explain_fchdir_or_die(3)

NAME
explain_fchdir_or_die − change directory and report errors

SYNOPSIS
#include <libexplian/fchdir.h>
void explain_fchdir_or_die(int fildes);

DESCRIPTION
The explain_fchdir_or_die function is used to change directory via thefchdir(2) system call. On failure, it
prints an error message on stderr viaexplain_fchdir(3), and exits.

This function is intended to be used in a fashion similar to the following example:
explain_fchdir_or_die(fildes);

fildes exactly as to be passed to thefchdir(2) system call.

SEE ALSO
fchdir(3)

change working directory

explain_fchdir(3)
reportfchdir(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

215

explain_fchmod(3) explain_fchmod(3)

NAME
explain_fchmod − explainfchmod(2) errors

SYNOPSIS
#include <libexplain/fchmod.h>

const char *explain_fchmod(int fildes, mode_t mode);
const char *explain_errno_fchmod(int errnum, int fildes, mode_t mode);
void explain_message_fchmod(char *message, int message_size, int fildes, mode_t mode);
void explain_message_errno_fchmod(char *message, int message_size, int errnum, int fildes, mode_t
mode);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefchmod(2) system call.

explain_fchmod
const char *explain_fchmod(int fildes, mode_t mode);

The explain_fchmod function is used to obtain an explanation of an error returned by thefchmod(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thefchmod(2) system call.

mode The original mode, exactly as passed to thefchmod(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)
{

fprintf(stderr, "%s\n", explain_fchmod(fildes, mode));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fchmod_or_die(3) function.

explain_errno_fchmod
const char *explain_errno_fchmod(int errnum, int fildes, mode_t mode);

Theexplain_errno_fchmod function is used to obtain an explanation of an error returned by thefchmod(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefchmod(2) system call.

mode The original mode, exactly as passed to thefchmod(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

216

explain_fchmod(3) explain_fchmod(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fchmod(err, fildes,
mode));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fchmod_or_die(3) function.

explain_message_fchmod
void explain_message_fchmod(char *message, int message_size, int fildes, mode_t mode);

The explain_message_fchmodfunction is used to obtain an explanation of an error returned by the
fchmod(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefchmod(2) system call.

mode The original mode, exactly as passed to thefchmod(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchmod(fildes, mode) < 0)
{

char message[3000];
explain_message_fchmod(message, sizeof(message), fildes,
mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fchmod_or_die(3) function.

explain_message_errno_fchmod
void explain_message_errno_fchmod(char *message, int message_size, int errnum, int fildes, mode_t
mode);

Theexplain_message_errno_fchmodfunction is used to obtain an explanation of an error returned by the
fchmod(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefchmod(2) system call.

mode The original mode, exactly as passed to thefchmod(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:

217

explain_fchmod(3) explain_fchmod(3)

if (fchmod(fildes, mode) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fchmod(message, sizeof(message), err,
fildes, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fchmod_or_die(3) function.

SEE ALSO
fchmod(2)

change permissions of an open file

explain_fchmod_or_die(3)
change permissions of an open file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

218

explain_fchmod_or_die(3) explain_fchmod_or_die(3)

NAME
explain_fchmod_or_die − change permissions of an open file and report errors

SYNOPSIS
#include <libexplain/fchmod.h>

void explain_fchmod_or_die(int fildes, mode_t mode);
int explain_fchmod_on_error(int fildes, mode_t mode);

DESCRIPTION
The explain_fchmod_or_diefunction is used to call thefchmod(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fchmod(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_fchmod_on_error function is used to call thefchmod(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_fchmod(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thefchmod(2) system call.

mode The mode, exactly as to be passed to thefchmod(2) system call.

RETURN VALUE
The explain_fchmod_or_die function only returns on success, seefchmod(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_fchmod_on_error function always returns the value return by the wrappedfchmod(2) system
call.

EXAMPLE
Theexplain_fchmod_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fchmod_or_die(fildes, mode);

SEE ALSO
fchmod(2)

change permissions of an open file

explain_fchmod(3)
explain fchmod(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

219

explain_fchown(3) explain_fchown(3)

NAME
explain_fchown − explain fchown(2) errors

SYNOPSIS
#include <libexplain/fchown.h>

const char *explain_fchown(int fildes, int owner, int group);
const char *explain_errno_fchown(int errnum, int fildes, int owner, int group);
void explain_message_fchown(char *message, int message_size, int fildes, int owner, int group);
void explain_message_errno_fchown(char *message, int message_size, int errnum, int fildes, int owner, int
group);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefchown(2) system call.

explain_fchown
const char *explain_fchown(int fildes, int owner, int group);

Theexplain_fchown function is used to obtain an explanation of an error returned by thefchown(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)
{

fprintf(stderr, "%s\n", explain_fchown(fildes, owner, group));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fchown_or_die(3) function.

fildes The original fildes, exactly as passed to thefchown(2) system call.

owner The original owner, exactly as passed to thefchown(2) system call.

group The original group, exactly as passed to thefchown(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fchown
const char *explain_errno_fchown(int errnum, int fildes, int owner, int group);

Theexplain_errno_fchown function is used to obtain an explanation of an error returned by thefchown(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)
{

int err = errno;
fprintf(stderr, "%s\n",

explain_errno_fchown(err, fildes, owner, group));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fchown_or_die(3) function.

220

explain_fchown(3) explain_fchown(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefchown(2) system call.

owner The original owner, exactly as passed to thefchown(2) system call.

group The original group, exactly as passed to thefchown(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fchown
void explain_message_fchown(char *message, int message_size, int fildes, int owner, int group);

The explain_message_fchownfunction may be used to obtain an explanation of an error returned by the
fchown(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)
{

char message[3000];
explain_message_fchown(message, sizeof(message), fildes, owner, group);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fchown_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefchown(2) system call.

owner The original owner, exactly as passed to thefchown(2) system call.

group The original group, exactly as passed to thefchown(2) system call.

explain_message_errno_fchown
void explain_message_errno_fchown(char *message, int message_size, int errnum, int fildes, int owner, int
group);

The explain_message_errno_fchownfunction may be used to obtain an explanation of an error returned
by thefchown(2) system call.The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fchown(fildes, owner, group) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fchown(message, sizeof(message),

err, fildes, owner, group);
fprintf(stderr, "%s\n", message);

221

explain_fchown(3) explain_fchown(3)

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_fchown_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefchown(2) system call.

owner The original owner, exactly as passed to thefchown(2) system call.

group The original group, exactly as passed to thefchown(2) system call.

SEE ALSO
fchown(2)

change ownership of a file

explain_fchown_or_die(3)
change ownership of a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

222

explain_fchownat(3) explain_fchownat(3)

NAME
explain_fchownat − explainfchownat(2) errors

SYNOPSIS
#include <libexplain/fchownat.h>

const char *explain_fchownat(int dirfd, const char *pathname, int owner, int group, int flags);
const char *explain_errno_fchownat(int errnum, int dirfd, const char *pathname, int owner, int group, int
flags);
void explain_message_fchownat(char *message, int message_size, int dirfd, const char *pathname, int
owner, int group, int flags);
void explain_message_errno_fchownat(char *message, int message_size, int errnum, int dirfd, const char
*pathname, int owner, int group, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefchownat(2) system call.

explain_fchownat
const char *explain_fchownat(int dirfd, const char *pathname, int owner, int group, int flags);

The explain_fchownat function is used to obtain an explanation of an error returned by thefchownat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

dirfd The original dirfd, exactly as passed to thefchownat(2) system call.

pathname
The original pathname, exactly as passed to thefchownat(2) system call.

owner The original owner, exactly as passed to thefchownat(2) system call.

group The original group, exactly as passed to thefchownat(2) system call.

flags The original flags, exactly as passed to thefchownat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchownat(dirfd, pathname, owner, group, flags) < 0)
{

fprintf(stderr, "%s\n", explain_fchownat(dirfd, pathname,
owner, group, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fchownat_or_die(3) function.

explain_errno_fchownat
const char *explain_errno_fchownat(int errnum, int dirfd, const char *pathname, int owner, int group, int
flags);

The explain_errno_fchownat function is used to obtain an explanation of an error returned by the
fchownat(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

223

explain_fchownat(3) explain_fchownat(3)

explained and this function, because many libc functions will alter the value oferrno.

dirfd The original dirfd, exactly as passed to thefchownat(2) system call.

pathname
The original pathname, exactly as passed to thefchownat(2) system call.

owner The original owner, exactly as passed to thefchownat(2) system call.

group The original group, exactly as passed to thefchownat(2) system call.

flags The original flags, exactly as passed to thefchownat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchownat(dirfd, pathname, owner, group, flags) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fchownat(err, dirfd,
pathname, owner, group, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fchownat_or_die(3) function.

explain_message_fchownat
void explain_message_fchownat(char *message, int message_size, int dirfd, const char *pathname, int
owner, int group, int flags);

The explain_message_fchownatfunction is used to obtain an explanation of an error returned by the
fchownat(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

dirfd The original dirfd, exactly as passed to thefchownat(2) system call.

pathname
The original pathname, exactly as passed to thefchownat(2) system call.

owner The original owner, exactly as passed to thefchownat(2) system call.

group The original group, exactly as passed to thefchownat(2) system call.

flags The original flags, exactly as passed to thefchownat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchownat(dirfd, pathname, owner, group, flags) < 0)
{

char message[3000];
explain_message_fchownat(message, sizeof(message), dirfd,
pathname, owner, group, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

224

explain_fchownat(3) explain_fchownat(3)

}

The above code example is available pre−packaged as theexplain_fchownat_or_die(3) function.

explain_message_errno_fchownat
void explain_message_errno_fchownat(char *message, int message_size, int errnum, int dirfd, const char
*pathname, int owner, int group, int flags);

The explain_message_errno_fchownatfunction is used to obtain an explanation of an error returned by
the fchownat(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dirfd The original dirfd, exactly as passed to thefchownat(2) system call.

pathname
The original pathname, exactly as passed to thefchownat(2) system call.

owner The original owner, exactly as passed to thefchownat(2) system call.

group The original group, exactly as passed to thefchownat(2) system call.

flags The original flags, exactly as passed to thefchownat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fchownat(dirfd, pathname, owner, group, flags) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fchownat(message, sizeof(message), err,
dirfd, pathname, owner, group, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fchownat_or_die(3) function.

SEE ALSO
fchownat(2)

change ownership of a file relative to a directory

explain_fchownat_or_die(3)
change ownership of a file relative to a directory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

225

explain_fchownat_or_die(3) explain_fchownat_or_die(3)

NAME
explain_fchownat_or_die − change ownership of a file relative to a directory andreport errors

SYNOPSIS
#include <libexplain/fchownat.h>

void explain_fchownat_or_die(int dirfd, const char *pathname, int owner, int group, int flags);
int explain_fchownat_on_error(int dirfd, const char *pathname, int owner, int group, int flags);

DESCRIPTION
The explain_fchownat_or_die function is used to call thefchownat(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_fchownat(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_fchownat_on_error function is used to call thefchownat(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_fchownat(3) function, but still returns to the
caller.

dirfd The dirfd, exactly as to be passed to thefchownat(2) system call.

pathname
The pathname, exactly as to be passed to thefchownat(2) system call.

owner The owner, exactly as to be passed to thefchownat(2) system call.

group The group, exactly as to be passed to thefchownat(2) system call.

flags The flags, exactly as to be passed to thefchownat(2) system call.

RETURN VALUE
Theexplain_fchownat_or_diefunction only returns on success, seefchownat(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fchownat_on_error function always returns the value return by the wrappedfchownat(2)
system call.

EXAMPLE
The explain_fchownat_or_die function is intended to be used in a fashion similar to the following
example:

explain_fchownat_or_die(dirfd, pathname, owner, group, flags);

SEE ALSO
fchownat(2)

change ownership of a file relative to a directory

explain_fchownat(3)
explain fchownat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

226

explain_fchown_or_die(3) explain_fchown_or_die(3)

NAME
explain_fchown_or_die − change ownership of a file and report errors

SYNOPSIS
#include <libexplain/fchown.h>

void explain_fchown_or_die(int fildes, int owner, int group);

DESCRIPTION
Theexplain_fchown_or_diefunction is used to call thefchown(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_fchown(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_fchown_or_die(fildes, owner, group);

fildes The fildes, exactly as to be passed to thefchown(2) system call.

owner The owner, exactly as to be passed to thefchown(2) system call.

group The group, exactly as to be passed to thefchown(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fchown(2)

change ownership of a file

explain_fchown(3)
explain fchown(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

227

explain_fclose(3) explain_fclose(3)

NAME
explain_fclose − explain fclose(3) errors

SYNOPSIS
#include <libexplain/fclose.h>
const char *explain_fclose(FILE *fp);
const char *explain_errno_fclose(int errnum, FILE *fp);
void explain_message_fclose(char *message, int message_size, FILE *fp);
void explain_message_errno_fclose(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations offclose(3) errors.

explain_fclose
const char *explain_fclose(FILE * fp);

The explain_fclose function is used to obtain an explanation of an error returned by thefclose(3) function.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))
{

fprintf(stderr, "%s\n", explain_fclose(fp));
exit(EXIT_FAILURE);

}

fp The original fp, exactly as passed to thefclose(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Note: This function may be of little diagnostic value, because libc may have destroyed any useful context,
leaving nothing for libexplain to work with (this is true of glibc in particular).For files that are open for
writing, you will obtain more useful information by first callingfflush(3), as in the following example

if (fflush(fp))
{

fprintf(stderr, "%s\n", explain_fflush(fp));
exit(EXIT_FAILURE);

}
if (fclose(fp))
{

fprintf(stderr, "%s\n", explain_fclose(fp));
exit(EXIT_FAILURE);

}

explain_errno_fclose
const char *explain_errno_fclose(int errnum, FILE * fp);

The explain_errno_fclose function is used to obtain an explanation of an error returned by thefclose(3)
function. Theleast the message will contain is the value ofstrerror(errnum) , but usually it will do
much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))

228

explain_fclose(3) explain_fclose(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_fclose(err, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefclose(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Note: This function may be of little diagnostic value, because libc may have destroyed any useful context,
leaving nothing for libexplain to work with (this is true of glibc in particular).For files that are open for
writing, you will obtain more useful information by first callingfflush(3), as in the following example

if (fflush(fp))
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fflush(err, fp));
exit(EXIT_FAILURE);

}
if (fclose(fp))
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fclose(err, fp));
exit(EXIT_FAILURE);

}

explain_message_fclose
void explain_message_fclose(char *message, int message_size, FILE *fp);

The explain_message_fclose function is used to obtain an explanation of an error returned by thefclose(3)
function. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fclose(fp))
{

char message[3000];
explain_message_fclose(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefclose(3)system call.

Note: This function may be of little diagnostic value, because libc may have destroyed any useful context,

229

explain_fclose(3) explain_fclose(3)

leaving nothing for libexplain to work with (this is true of glibc in particular).For files that are open for
writing, you will obtain more useful information by first callingfflush(3), as in the following example

if (fflush(fp))
{

char message[3000];
explain_message_fflush(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}
if (fclose(fp))
{

char message[3000];
explain_message_fclose(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

explain_message_errno_fclose
void explain_message_errno_fclose(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fclose function is used to obtain an explanation of an error returned by the
fclose(3) function. The least the message will contain is the value ofstrerror(errnum) , but usually it
will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following exameple:
if (fclose(fp))
{

int err = errno;
char message[3000];
explain_message_errno_fclose(message, sizeof(message),

err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefclose(3) system call.

Note: This function may be of little diagnostic value, because libc may have destroyed any useful context,
leaving nothing for libexplain to work with (this is true of glibc in particular).For files that are open for
writing, you will obtain more useful information by first callingfflush(3), as in the following example

if (fflush(fp))
{

int err = errno;
char message[3000];
explain_message_errno_fflush(message, sizeof(message),

err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

230

explain_fclose(3) explain_fclose(3)

if (fclose(fp))
{

int err = errno;
char message[3000];
explain_message_errno_fclose(message, sizeof(message),

err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

231

explain_fclose_or_die(3) explain_fclose_or_die(3)

NAME
explain_fclose_or_die − close a stream and report errors

SYNOPSIS
#include <libexplain/fclose.h>
void explain_fclose_or_die(FILE *fp);

DESCRIPTION
The explain_fclose_or_die function is used tofflush(3) andfclose(3) the given stream. Ifthere is an error, it
will be reported usingexplain_fclose(3), and then terminates by callingexit(EXIT_FAILURE) .

explain_fclose_or_die(fp);

fp The fp, exactly as to be passed to thefclose(3) system call.

Returns: Only returns on success. Reports error and process exits on failure.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

232

explain_fcntl(3) explain_fcntl(3)

NAME
explain_fcntl − explain fcntl(2) errors

SYNOPSIS
#include <libexplain/fcntl.h>

const char *explain_fcntl(int fildes, int command, long arg);
const char *explain_errno_fcntl(int errnum, int fildes, int command, long arg);
void explain_message_fcntl(char *message, int message_size, int fildes, int command, long arg);
void explain_message_errno_fcntl(char *message, int message_size, int errnum, int fildes, int command,
long arg);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefcntl(2) system call.

explain_fcntl
const char *explain_fcntl(int fildes, int command, long arg);

Theexplain_fcntl function is used to obtain an explanation of an error returned by thefcntl(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fcntl(fildes, command, arg) < 0)
{

fprintf(stderr, "%s\n", explain_fcntl(fildes, command, arg));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to thefcntl(2) system call.

command
The original command, exactly as passed to thefcntl(2) system call.

arg The original arg, exactly as passed to thefcntl(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fcntl
const char *explain_errno_fcntl(int errnum, int fildes, int command, long arg);

The explain_errno_fcntl function is used to obtain an explanation of an error returned by thefcntl(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fcntl(fildes, command, arg) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fcntl(err, fildes, command, arg));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

233

explain_fcntl(3) explain_fcntl(3)

fildes The original fildes, exactly as passed to thefcntl(2) system call.

command
The original command, exactly as passed to thefcntl(2) system call.

arg The original arg, exactly as passed to thefcntl(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fcntl
void explain_message_fcntl(char *message, int message_size, int fildes, int command, long arg);

The explain_message_fcntlfunction may be used toobtain an explanation of an error returned by the
fcntl(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fcntl(fildes, command, arg) < 0)
{

char message[3000];
explain_message_fcntl(message, sizeof(message), fildes, command, arg);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefcntl(2) system call.

command
The original command, exactly as passed to thefcntl(2) system call.

arg The original arg, exactly as passed to thefcntl(2) system call.

explain_message_errno_fcntl
void explain_message_errno_fcntl(char *message, int message_size, int errnum, int fildes, int command,
long arg);

The explain_message_errno_fcntlfunction may be used to obtain an explanation of an error returned by
the fcntl(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fcntl(fildes, command, arg) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fcntl(message, sizeof(message), err, fildes,

command, arg);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

234

explain_fcntl(3) explain_fcntl(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefcntl(2) system call.

command
The original command, exactly as passed to thefcntl(2) system call.

arg The original arg, exactly as passed to thefcntl(2) system call.

SEE ALSO
fcntl(2) manipulate a file descriptor

explain_fcntl_or_die(3)
manipulate a file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

235

explain_fcntl_or_die(3) explain_fcntl_or_die(3)

NAME
explain_fcntl_or_die − manipulate a file descriptor and report errors

SYNOPSIS
#include <libexplain/fcntl.h>

int explain_fcntl_or_die(int fildes, int command, long arg);

DESCRIPTION
Theexplain_fcntl_or_die function is used to call thefcntl(2) system call.On failure an explanation will be
printed to stderr, obtained from explain_fcntl(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int result = explain_fcntl_or_die(fildes, command, arg);

fildes The fildes, exactly as to be passed to thefcntl(2) system call.

command
The command, exactly as to be passed to thefcntl(2) system call.

arg The arg, exactly as to be passed to thefcntl(2) system call.

Returns: This function only returns on success, and it returns whatever was returned by the fcntl(2) call;
depending on the command, this may have no use. Onfailure, prints an explanation and exits, it
does not return.

SEE ALSO
fcntl(2) manipulate a file descriptor

explain_fcntl(3)
explain fcntl(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

236

explain_fdopen(3) explain_fdopen(3)

NAME
explain_fdopen − explain fdopen(3) errors

SYNOPSIS
#include <libexplain/fdopen.h>

const char *explain_fdopen(int fildes, const char *flags);
const char *explain_errno_fdopen(int errnum, int fildes, const char *flags);
void explain_message_fdopen(char *message, int message_size, int fildes, const char *flags);
void explain_message_errno_fdopen(char *message, int message_size, int errnum, int fildes, const char
*flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefdopen(3) system call.

explain_fdopen
const char *explain_fdopen(int fildes, const char *flags);

Theexplain_fdopenfunction is used to obtain an explanation of an error returned by thefdopen(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if (!fp)
{

fprintf(stderr, "%s\n", explain_fdopen(fildes, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fdopen_or_die(3) function.

fildes The original fildes, exactly as passed to thefdopen(3) system call.

flags The original flags, exactly as passed to thefdopen(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fdopen
const char *explain_errno_fdopen(int errnum, int fildes, const char *flags);

Theexplain_errno_fdopenfunction is used to obtain an explanation of an error returned by thefdopen(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if (!fp)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fdopen(err, fildes, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fdopen_or_die(3) function.

237

explain_fdopen(3) explain_fdopen(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefdopen(3) system call.

flags The original flags, exactly as passed to thefdopen(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fdopen
void explain_message_fdopen(char *message, int message_size, int fildes, const char *flags);

The explain_message_fdopenfunction may be used to obtain an explanation of an error returned by the
fdopen(3) system call.The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if (!fp)
{

char message[3000];
explain_message_fdopen(message, sizeof(message), fildes, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fdopen_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefdopen(3) system call.

flags The original flags, exactly as passed to thefdopen(3) system call.

explain_message_errno_fdopen
void explain_message_errno_fdopen(char *message, int message_size, int errnum, int fildes, const char
*flags);

The explain_message_errno_fdopenfunction may be used to obtain an explanation of an error returned
by the fdopen(3) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fdopen(fildes, flags);
if (!fp)

{
int err = errno;
char message[3000];
explain_message_errno_fdopen(message, sizeof(message),

err, fildes, flags);
fprintf(stderr, "%s\n", message);

238

explain_fdopen(3) explain_fdopen(3)

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_fdopen_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefdopen(3) system call.

flags The original flags, exactly as passed to thefdopen(3) system call.

SEE ALSO
fdopen(3)

stream open functions

explain_fdopen_or_die(3)
stream open functions and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

239

explain_fdopendir(3) explain_fdopendir(3)

NAME
explain_fdopendir − explainfdopendir(3) errors

SYNOPSIS
#include <libexplain/fdopendir.h>

const char *explain_fdopendir(int fildes);
const char *explain_errno_fdopendir(int errnum, int fildes);
void explain_message_fdopendir(char *message, int message_size, int fildes);
void explain_message_errno_fdopendir(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefdopendir(3) system call.

explain_fdopendir
const char *explain_fdopendir(int fildes);

The explain_fdopendir function is used to obtain an explanation of an error returned by thefdopendir(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thefdopendir(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);
if (!result)
{

fprintf(stderr, "%s\n", explain_fdopendir(fildes));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fdopendir_or_die(3) function.

explain_errno_fdopendir
const char *explain_errno_fdopendir(int errnum, int fildes);

The explain_errno_fdopendir function is used to obtain an explanation of an error returned by the
fdopendir(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefdopendir(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);

240

explain_fdopendir(3) explain_fdopendir(3)

if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fdopendir(err, fildes));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fdopendir_or_die(3) function.

explain_message_fdopendir
void explain_message_fdopendir(char *message, int message_size, int fildes);

The explain_message_fdopendirfunction is used to obtain an explanation of an error returned by the
fdopendir(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefdopendir(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);
if (!result)
{

char message[3000];
explain_message_fdopendir(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fdopendir_or_die(3) function.

explain_message_errno_fdopendir
void explain_message_errno_fdopendir(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fdopendirfunction is used to obtain an explanation of an error returned by
the fdopendir(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefdopendir(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
DIR *result = fdopendir(fildes);
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_fdopendir(message, sizeof(message), err,

241

explain_fdopendir(3) explain_fdopendir(3)

fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fdopendir_or_die(3) function.

SEE ALSO
fdopendir(3)

open a directory

explain_fdopendir_or_die(3)
open a directory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

242

explain_fdopendir_or_die(3) explain_fdopendir_or_die(3)

NAME
explain_fdopendir_or_die − open a directory and report errors

SYNOPSIS
#include <libexplain/fdopendir.h>

DIR *explain_fdopendir_or_die(int fildes);
DIR *explain_fdopendir_on_error(int fildes);

DESCRIPTION
The explain_fdopendir_or_die function is used to call thefdopendir(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_fdopendir(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_fdopendir_on_error function is used to call thefdopendir(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_fdopendir(3) function, but still returns to
the caller.

fildes The fildes, exactly as to be passed to thefdopendir(3) system call.

RETURN VALUE
The explain_fdopendir_or_die function only returns on success, seefdopendir(3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_fdopendir_on_error function always returns the value return by the wrappedfdopendir(3)
system call.

EXAMPLE
The explain_fdopendir_or_die function is intended to be used in a fashion similar to the following
example:

DIR *result = explain_fdopendir_or_die(fildes);

SEE ALSO
fdopendir(3)

open a directory

explain_fdopendir(3)
explain fdopendir(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

243

explain_fdopen_or_die(3) explain_fdopen_or_die(3)

NAME
explain_fdopen_or_die − stream open functions and report errors

SYNOPSIS
#include <libexplain/fdopen.h>

void explain_fdopen_or_die(int fd, const char *mode);

DESCRIPTION
The explain_fdopen_or_diefunction is used to call thefdopen(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_fdopen(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
FILE *fp = explain_fdopen_or_die(fd, mode);

fd The fd, exactly as to be passed to thefdopen(3) system call.

mode The mode, exactly as to be passed to thefdopen(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fdopen(3)

stream open functions

explain_fdopen(3)
explain fdopen(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

244

explain_feof(3) explain_feof(3)

NAME
explain_feof − explainfeof(3) errors

SYNOPSIS
#include <libexplain/feof.h>

const char *explain_feof(FILE *fp);
const char *explain_errno_feof(int errnum, FILE *fp);
void explain_message_feof(char *message, int message_size, FILE *fp);
void explain_message_errno_feof(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefeof(3) system call.

explain_feof
const char *explain_feof(FILE *fp);

The explain_feof function is used to obtain an explanation of an error returned by thefeof(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefeof(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)
{

fprintf(stderr, "%s\n", explain_feof(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_feof_or_die(3) function.

explain_errno_feof
const char *explain_errno_feof(int errnum, FILE *fp);

Theexplain_errno_feof function is used to obtain an explanation of an error returned by thefeof(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefeof(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)
{

245

explain_feof(3) explain_feof(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_feof(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_feof_or_die(3) function.

explain_message_feof
void explain_message_feof(char *message, int message_size, FILE *fp);

The explain_message_feoffunction is used to obtain an explanation of an error returned by thefeof(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefeof(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)
{

char message[3000];
explain_message_feof(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_feof_or_die(3) function.

explain_message_errno_feof
void explain_message_errno_feof(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_feoffunction is used to obtain an explanation of an error returned by the
feof(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefeof(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (feof(fp) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_feof(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_feof_or_die(3) function.

246

explain_feof(3) explain_feof(3)

SEE ALSO
feof(3) check and reset stream status

explain_feof_or_die(3)
check and reset stream status and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

247

explain_feof_or_die(3) explain_feof_or_die(3)

NAME
explain_feof_or_die − check and reset stream status and report errors

SYNOPSIS
#include <libexplain/feof.h>

void explain_feof_or_die(FILE *fp);
int explain_feof_on_error(FILE *fp);

DESCRIPTION
Theexplain_feof_or_diefunction is used to call thefeof(3) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_feof(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_feof_on_error function is used to call thefeof(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_feof(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thefeof(3) system call.

RETURN VALUE
The explain_feof_or_die function only returns on success, seefeof(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_feof_on_errorfunction always returns the value return by the wrappedfeof(3) system call.

EXAMPLE
Theexplain_feof_or_diefunction is intended to be used in a fashion similar to the following example:

explain_feof_or_die(fp);

SEE ALSO
feof(3) check and reset stream status

explain_feof(3)
explain feof(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

248

explain_ferror(3) explain_ferror(3)

NAME
explain_ferror − explain ferror(3) errors

SYNOPSIS
#include <libexplain/ferror.h>

const char *explain_ferror(FILE *fp);
const char *explain_errno_ferror(int errnum, FILE *fp);
void explain_message_ferror(char *message, int message_size, FILE *fp);
void explain_message_errno_ferror(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theferror(3) system call.

explain_ferror
const char *explain_ferror(FILE *fp);

The explain_ferror function is used to obtain an explanation of an error returned by theferror(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)
{

fprintf(stderr, "%s\n", explain_ferror(fp));
exit(EXIT_FAILURE);

}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code could have altered theerrnoglobal variable.

fp The original fp, exactly as passed to theferror(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_ferror
const char *explain_errno_ferror(int errnum, FILE *fp);

The explain_errno_ferror function is used to obtain an explanation of an error returned by theferror(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ferror(err, fp));
exit(EXIT_FAILURE);

}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code could have altered theerrnoglobal variable.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

249

explain_ferror(3) explain_ferror(3)

fp The original fp, exactly as passed to theferror(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_ferror
void explain_message_ferror(char *message, int message_size, FILE *fp);

The explain_message_ferrorfunction may be used to obtain an explanation of an error returned by the
ferror(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)
{

char message[3000];
explain_message_ferror(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code could have altered theerrnoglobal variable.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to theferror(3) system call.

explain_message_errno_ferror
void explain_message_errno_ferror(char *message, int message_size, int errnum, FILE *fp);

Theexplain_message_errno_ferrorfunction may be used to obtain an explanation of an error returned by
the ferror(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ferror(fp) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_ferror(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code could have altered theerrnoglobal variable.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

250

explain_ferror(3) explain_ferror(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to theferror(3) system call.

SEE ALSO
ferror(3)

check stream status

explain_ferror_or_die(3)
check stream status and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

251

explain_ferror_or_die(3) explain_ferror_or_die(3)

NAME
explain_ferror_or_die − check stream status and report errors

SYNOPSIS
#include <libexplain/ferror.h>

void explain_ferror_or_die(FILE *fp);

DESCRIPTION
The explain_ferror_or_die function is used to call theferror(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_ferror(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_ferror_or_die(fp);

It is essential that this function cal be placed as close as possible to the I/O code that has caused the
problem, otherwise intervening code could have altered theerrnoglobal variable.

fp The fp, exactly as to be passed to theferror(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
ferror(3)

check stream status

explain_ferror(3)
explain ferror(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

252

explain_fflush(3) explain_fflush(3)

NAME
explain_fflush − explain fflush(3) errors

SYNOPSIS
#include <libexplain/fflush.h>

const char *explain_fflush(FILE *fp);
const char *explain_errno_fflush(int errnum, FILE *fp);
void explain_message_fflush(char *message, int message_size, FILE *fp);
void explain_message_errno_fflush(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefflush(3) system call.

explain_fflush
const char *explain_fflush(FILE *fp);

The explain_fflush function is used to obtain an explanation of an error returned by thefflush(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefflush(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{

fprintf(stderr, "%s\n", explain_fflush(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fflush_or_die(3) function.

explain_errno_fflush
const char *explain_errno_fflush(int errnum, FILE *fp);

The explain_errno_fflush function is used to obtain an explanation of an error returned by thefflush(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefflush(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{

253

explain_fflush(3) explain_fflush(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fflush(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fflush_or_die(3) function.

explain_message_fflush
void explain_message_fflush(char *message, int message_size, FILE *fp);

Theexplain_message_fflushfunction is used to obtain an explanation of an error returned by thefflush(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefflush(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{

char message[3000];
explain_message_fflush(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fflush_or_die(3) function.

explain_message_errno_fflush
void explain_message_errno_fflush(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fflushfunction is used to obtain an explanation of an error returned by the
fflush(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefflush(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fflush(fp) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fflush(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

254

explain_fflush(3) explain_fflush(3)

The above code example is available pre-packaged as theexplain_fflush_or_die(3) function.

SEE ALSO
fflush(3) flush a stream

explain_fflush_or_die(3)
flush a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

255

explain_fflush_or_die(3) explain_fflush_or_die(3)

NAME
explain_fflush_or_die − flush a stream and report errors

SYNOPSIS
#include <libexplain/fflush.h>

void explain_fflush_or_die(FILE *fp);
int explain_fflush_on_error(FILE *fp);

DESCRIPTION
Theexplain_fflush_or_die function is used to call thefflush(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fflush(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_fflush_on_error function is used to call thefflush(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fflush(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thefflush(3) system call.

RETURN VALUE
Theexplain_fflush_or_diefunction only returns on success, seefflush(3) for more information. On failure,
prints an explanation and exits, it does not return.

The explain_fflush_on_error function always returns the value return by the wrappedfflush(3) system
call.

EXAMPLE
Theexplain_fflush_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fflush_or_die(fp);

SEE ALSO
fflush(3) flush a stream

explain_fflush(3)
explain fflush(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

256

explain_fgetc(3) explain_fgetc(3)

NAME
explain_fgetc − explain fgetc(3) errors

SYNOPSIS
#include <libexplain/fgetc.h>

const char *explain_fgetc(FILE *fp);
const char *explain_errno_fgetc(int errnum, FILE *fp);
void explain_message_fgetc(char *message, int message_size, FILE *fp);
void explain_message_errno_fgetc(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefgetc(3) system call.

explain_fgetc
const char *explain_fgetc(FILE *fp);

Theexplain_fgetcfunction is used to obtain an explanation of an error returned by thefgetc(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int c = fgetc(fp);
if (c == EOF && ferror(fp))
{

fprintf(stderr, "%s\n", explain_fgetc(fp));
exit(EXIT_FAILURE);

}

fp The original fp, exactly as passed to thefgetc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fgetc
const char *explain_errno_fgetc(int errnum, FILE *fp);

The explain_errno_fgetc function is used to obtain an explanation of an error returned by thefgetc(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int c = fgetc(fp);
if (c == EOF && ferror(fp))
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgetc(err, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefgetc(3) system call.

257

explain_fgetc(3) explain_fgetc(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fgetc
void explain_message_fgetc(char *message, int message_size, FILE *fp);

The explain_message_fgetcfunction may be used to obtain an explanation of an error returned by the
fgetc(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int c = fgetc(fp);
if (c == EOF && ferror(fp))
{

char message[3000];
explain_message_fgetc(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefgetc(3) system call.

explain_message_errno_fgetc
void explain_message_errno_fgetc(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fgetcfunction may be used to obtain an explanation of an error returned by
the fgetc(3) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int c = fgetc(fp);
if (c == EOF && ferror(fp))
{

int err = errno;
char message[3000];
explain_message_errno_fgetc(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

258

explain_fgetc(3) explain_fgetc(3)

fp The original fp, exactly as passed to thefgetc(3) system call.

SEE ALSO
fgetc(3) input of characters

explain_fgetc_or_die(3)
input of characters and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

259

explain_fgetc_or_die(3) explain_fgetc_or_die(3)

NAME
explain_fgetc_or_die − input of characters and report errors

SYNOPSIS
#include <libexplain/fgetc.h>

int explain_fgetc_or_die(FILE *fp);

DESCRIPTION
The explain_fgetc_or_diefunction is used to call thefgetc(3) system call. On failure an explanation will
be printed to stderr, obtained from explain_fgetc(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int c = explain_fgetc_or_die(fp);

fp The fp, exactly as to be passed to thefgetc(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fgetc(3) input of characters

explain_fgetc(3)
explain fgetc(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

260

explain_fgetpos(3) explain_fgetpos(3)

NAME
explain_fgetpos − explainfgetpos(3) errors

SYNOPSIS
#include <libexplain/fgetpos.h>

const char *explain_fgetpos(FILE *fp, fpos_t *pos);
const char *explain_errno_fgetpos(int errnum, FILE *fp, fpos_t *pos);
void explain_message_fgetpos(char *message, int message_size, FILE *fp, fpos_t *pos);
void explain_message_errno_fgetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefgetpos(3) system call.

explain_fgetpos
const char *explain_fgetpos(FILE *fp, fpos_t *pos);

Theexplain_fgetposfunction is used to obtain an explanation of an error returned by thefgetpos(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefgetpos(3) system call.

pos The original pos, exactly as passed to thefgetpos(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{

fprintf(stderr, "%s\n", explain_fgetpos(fp, pos));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fgetpos_or_die(3) function.

explain_errno_fgetpos
const char *explain_errno_fgetpos(int errnum, FILE *fp, fpos_t *pos);

Theexplain_errno_fgetposfunction is used to obtain an explanation of an error returned by thefgetpos(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefgetpos(3) system call.

pos The original pos, exactly as passed to thefgetpos(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

261

explain_fgetpos(3) explain_fgetpos(3)

if (fgetpos(fp, pos) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgetpos(err, fp, pos));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fgetpos_or_die(3) function.

explain_message_fgetpos
void explain_message_fgetpos(char *message, int message_size, FILE *fp, fpos_t *pos);

The explain_message_fgetposfunction is used to obtain an explanation of an error returned by the
fgetpos(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefgetpos(3) system call.

pos The original pos, exactly as passed to thefgetpos(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{

char message[3000];
explain_message_fgetpos(message, sizeof(message), fp, pos);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fgetpos_or_die(3) function.

explain_message_errno_fgetpos
void explain_message_errno_fgetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);

Theexplain_message_errno_fgetposfunction is used to obtain an explanation of an error returned by the
fgetpos(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefgetpos(3) system call.

pos The original pos, exactly as passed to thefgetpos(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fgetpos(fp, pos) < 0)
{

int err = errno;
char message[3000];

262

explain_fgetpos(3) explain_fgetpos(3)

explain_message_errno_fgetpos(message, sizeof(message), err,
fp, pos);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fgetpos_or_die(3) function.

SEE ALSO
fgetpos(3)

reposition a stream

explain_fgetpos_or_die(3)
reposition a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

263

explain_fgetpos_or_die(3) explain_fgetpos_or_die(3)

NAME
explain_fgetpos_or_die − reposition a stream and report errors

SYNOPSIS
#include <libexplain/fgetpos.h>

void explain_fgetpos_or_die(FILE *fp, fpos_t *pos);
int explain_fgetpos_on_error(FILE *fp, fpos_t *pos);

DESCRIPTION
The explain_fgetpos_or_diefunction is used to call thefgetpos(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fgetpos(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_fgetpos_on_error function is used to call thefgetpos(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_fgetpos(3) function, but still returns to the
caller.

fp The fp, exactly as to be passed to thefgetpos(3) system call.

pos The pos, exactly as to be passed to thefgetpos(3) system call.

RETURN VALUE
The explain_fgetpos_or_diefunction only returns on success, seefgetpos(3) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_fgetpos_on_errorfunction always returns the value return by the wrappedfgetpos(3) system
call.

EXAMPLE
Theexplain_fgetpos_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fgetpos_or_die(fp, pos);

SEE ALSO
fgetpos(3)

reposition a stream

explain_fgetpos(3)
explain fgetpos(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

264

explain_fgets(3) explain_fgets(3)

NAME
explain_fgets − explain fgets(3) errors

SYNOPSIS
#include <libexplain/fgets.h>

const char *explain_fgets(char *data, int data_size, FILE *fp);
const char *explain_errno_fgets(int errnum, char *data, int data_size, FILE *fp);
void explain_message_fgets(char *message, int message_size, char *data, int data_size, FILE *fp);
void explain_message_errno_fgets(char *message, int message_size, int errnum, char *data, int data_size,
FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefgets(3) system call.

explain_fgets
const char *explain_fgets(char *data, int data_size, FILE *fp);

Theexplain_fgetsfunction is used to obtain an explanation of an error returned by thefgets(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)
{

fprintf(stderr, "%s\n", explain_fgets(data, data_size, fp));
exit(EXIT_FAILURE);

}

data The original data, exactly as passed to thefgets(3) system call.

data_size
The original data_size, exactly as passed to thefgets(3) system call.

fp The original fp, exactly as passed to thefgets(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fgets
const char *explain_errno_fgets(int errnum, char *data, int data_size, FILE *fp);

The explain_errno_fgets function is used to obtain an explanation of an error returned by thefgets(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fgets(err, data, data_size, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

265

explain_fgets(3) explain_fgets(3)

data The original data, exactly as passed to thefgets(3) system call.

data_size
The original data_size, exactly as passed to thefgets(3) system call.

fp The original fp, exactly as passed to thefgets(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fgets
void explain_message_fgets(char *message, int message_size, char *data, int data_size, FILE *fp);

The explain_message_fgetsfunction may be used to obtain an explanation of an error returned by the
fgets(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)
{

char message[3000];
explain_message_fgets(message, sizeof(message), data, data_size, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thefgets(3) system call.

data_size
The original data_size, exactly as passed to thefgets(3) system call.

fp The original fp, exactly as passed to thefgets(3) system call.

explain_message_errno_fgets
void explain_message_errno_fgets(char *message, int message_size, int errnum, char *data, int data_size,
FILE *fp);

The explain_message_errno_fgetsfunction may be used to obtain an explanation of an error returned by
the fgets(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fgets(data, data_size, fp) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fgets(message, sizeof(message), err,

data, data_size, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

266

explain_fgets(3) explain_fgets(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thefgets(3) system call.

data_size
The original data_size, exactly as passed to thefgets(3) system call.

fp The original fp, exactly as passed to thefgets(3) system call.

SEE ALSO
fgets(3) input of strings

explain_fgets_or_die(3)
input of strings and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

267

explain_fgets_or_die(3) explain_fgets_or_die(3)

NAME
explain_fgets_or_die − input of strings and report errors

SYNOPSIS
#include <libexplain/fgets.h>

char *explain_fgets_or_die(char *data, int data_size, FILE *fp);

DESCRIPTION
The explain_fgets_or_diefunction is used to call thefgets(3) system call. On failure an explanation will
be printed to stderr, obtained from explain_fgets(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_fgets_or_die(data, data_size, fp);

data The data, exactly as to be passed to thefgets(3) system call.

data_size
The data_size, exactly as to be passed to thefgets(3) system call.

fp The fp, exactly as to be passed to thefgets(3) system call.

Returns: This function only returns on success; data when a line is read, or NULL on end-of-file. On
failure, prints an explanation and exits.

SEE ALSO
fgets(3) input of strings

explain_fgets(3)
explain fgets(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

268

explain_filename_from_fildes(3) explain_filename_from_fildes(3)

NAME
explain_filename_from_fildes − obtain filename from file descriptor

SYNOPSIS
#include <libexplain/filename.h>

int explain_filename_from_fildes(int fildes, char *data, size_t data_size);

int explain_filename_from_stream(FILE *stream, char *data, size_t data_size);

DESCRIPTION
The explain_filename_from_fildesfunction may be used to obtain the name of the file associated with the
fi le descriptor.

The explain_filename_from_streamfunction may be used to obtain the name of the file associated with a
fi le stream.

The filename is returned in the array pointed to bydata. The filename will always be NUL terminated.If
the returned filename is longer thandata_size, it will be silently truncated; a size of at least (PATH_MAX +
1) is suggested.

On success, returns zero. If the file name cannot be determined, returns −1 (but doesnot seterrno.)

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

269

explain_fileno(3) explain_fileno(3)

NAME
explain_fileno − explain fileno(3) errors

SYNOPSIS
#include <libexplain/fileno.h>

const char *explain_fileno(FILE *fp);
const char *explain_errno_fileno(int errnum, FILE *fp);
void explain_message_fileno(char *message, int message_size, FILE *fp);
void explain_message_errno_fileno(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefileno(3) system call.

explain_fileno
const char *explain_fileno(FILE *fp);

The explain_fileno function is used to obtain an explanation of an error returned by thefileno(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefileno(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{

fprintf(stderr, "%s\n", explain_fileno(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fileno_or_die(3) function.

explain_errno_fileno
const char *explain_errno_fileno(int errnum, FILE *fp);

The explain_errno_fileno function is used to obtain an explanation of an error returned by thefileno(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefileno(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{

270

explain_fileno(3) explain_fileno(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fileno(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fileno_or_die(3) function.

explain_message_fileno
void explain_message_fileno(char *message, int message_size, FILE *fp);

Theexplain_message_filenofunction is used to obtain an explanation of an error returned by thefileno(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefileno(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{

char message[3000];
explain_message_fileno(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fileno_or_die(3) function.

explain_message_errno_fileno
void explain_message_errno_fileno(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_filenofunction is used to obtain an explanation of an error returned by the
fileno(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefileno(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fileno(fp) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fileno(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

271

explain_fileno(3) explain_fileno(3)

The above code example is available pre-packaged as theexplain_fileno_or_die(3) function.

SEE ALSO
fileno(3) check and reset stream status

explain_fileno_or_die(3)
check and reset stream status and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

272

explain_fileno_or_die(3) explain_fileno_or_die(3)

NAME
explain_fileno_or_die − check and reset stream status and report errors

SYNOPSIS
#include <libexplain/fileno.h>

int explain_fileno_or_die(FILE *fp);
int explain_fileno_on_error(FILE *fp);

DESCRIPTION
Theexplain_fileno_or_diefunction is used to call thefileno(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fileno(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_fileno_on_error function is used to call thefileno(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fileno(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thefileno(3) system call.

RETURN VALUE
Theexplain_fileno_or_diefunction only returns on success, seefileno(3) for more information. On failure,
prints an explanation and exits, it does not return.

The explain_fileno_on_error function always returns the value return by the wrappedfileno(3) system
call.

EXAMPLE
Theexplain_fileno_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fileno_or_die(fp);

SEE ALSO
fileno(3) check and reset stream status

explain_fileno(3)
explain fileno(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

273

explain_flock(3) explain_flock(3)

NAME
explain_flock − explain flock(2) errors

SYNOPSIS
#include <libexplain/flock.h>

const char *explain_flock(int fildes, int command);
const char *explain_errno_flock(int errnum, int fildes, int command);
void explain_message_flock(char *message, int message_size, int fildes, int command);
void explain_message_errno_flock(char *message, int message_size, int errnum, int fildes, int command);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theflock(2) system call.

explain_flock
const char *explain_flock(int fildes, int command);

Theexplain_flock function is used to obtain an explanation of an error returned by theflock(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to theflock(2) system call.

command
The original command, exactly as passed to theflock(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)
{

fprintf(stderr, "%s\n", explain_flock(fildes, command));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_flock_or_die(3) function.

explain_errno_flock
const char *explain_errno_flock(int errnum, int fildes, int command);

The explain_errno_flock function is used to obtain an explanation of an error returned by theflock(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theflock(2) system call.

command
The original command, exactly as passed to theflock(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

274

explain_flock(3) explain_flock(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_flock(err, fildes,
command));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_flock_or_die(3) function.

explain_message_flock
void explain_message_flock(char *message, int message_size, int fildes, int command);

The explain_message_flockfunction is used to obtain an explanation of an error returned by theflock(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theflock(2) system call.

command
The original command, exactly as passed to theflock(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)
{

char message[3000];
explain_message_flock(message, sizeof(message), fildes,
command);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_flock_or_die(3) function.

explain_message_errno_flock
void explain_message_errno_flock(char *message, int message_size, int errnum, int fildes, int command);

The explain_message_errno_flockfunction is used to obtain an explanation of an error returned by the
flock(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theflock(2) system call.

275

explain_flock(3) explain_flock(3)

command
The original command, exactly as passed to theflock(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (flock(fildes, command) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_flock(message, sizeof(message), err,
fildes, command);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_flock_or_die(3) function.

SEE ALSO
flock(2) apply or remove an advisory lock on an open file

explain_flock_or_die(3)
apply or remove an advisory lock on an open file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

276

explain_flock_or_die(3) explain_flock_or_die(3)

NAME
explain_flock_or_die − control advisory lock on open file and report errors

SYNOPSIS
#include <libexplain/flock.h>

void explain_flock_or_die(int fildes, int command);
int explain_flock_on_error(int fildes, int command))

DESCRIPTION
The explain_flock_or_die function is used to call theflock(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_flock(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_flock_on_error function is used to call theflock(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_flock(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to theflock(2) system call.

command
The command, exactly as to be passed to theflock(2) system call.

RETURN VALUE
Theexplain_flock_or_die function only returns on success, seeflock(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_flock_on_error function always returns the value return by the wrappedflock(2) system call.

EXAMPLE
Theexplain_flock_or_diefunction is intended to be used in a fashion similar to the following example:

explain_flock_or_die(fildes, command);

SEE ALSO
flock(2) apply or remove an advisory lock on an open file

explain_flock(3)
explain flock(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

277

explain_fopen(3) explain_fopen(3)

NAME
explain_fopen − explain fopen(3) errors

SYNOPSIS
#include <libexplain/fopen.h>
const char *explain_fopen(const char *path, const char *mode);
const char *explain_errno_fopen(int errnum, const char *path, const char *mode);
void explain_message_fopen(char *message, int message_size, const char *path, const char *mode);
void explain_message_errno_fopen(char *message, int message_size, int errnum, const char *path, const
char *mode);

DESCRIPTION
These functions may be used to obtain explanations forfopen(3) errors.

explain_fopen
const char *explain_fopen(const char *path, const char *mode);

The explain_fopen function is used to obtain an explanation of an error returned by thefopen(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if (!fp)
{

const char *message = explain_fopen(path, mode);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

path The original path, exactly as passed to thefopen(3) system call.

mode The original mode, exactly as passed to thefopen(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fopen
const char *explain_errno_fopen(int errnum, const char *path, const char *mode);

The explain_errno_fopen function is used to obtain an explanation of an error returned by thefopen(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if (!fp)
{

const char *message = explain_errno_fopen(err, path, mode);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

278

explain_fopen(3) explain_fopen(3)

path The original path, exactly as passed to thefopen(3) system call.

mode The original mode, exactly as passed to thefopen(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fopen
void explain_message_fopen(char *message, int message_size, const char *path, const char *mode);

The explain_message_fopen function is used to obtain an explanation of an error returned by thefopen(3)
system call. The least the message will contain is the value of strerror(errno), but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if (!fp)
{

char message[3000];
explain_message_fopen(message, sizeof(message), path, mode);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

path The original path, exactly as passed to thefopen(3) system call.

mode The original mode, exactly as passed to thefopen(3) system call

explain_message_errno_fopen
void explain_message_errno_fopen(char *message, int message_size, int errnum, const char *path, const
char *mode);

The explain_message_errno_fopen function is used to obtain an explanation of an error returned by the
fopen(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = fopen(path, mode);
if (!fp)
{

int err = errno;
char message[3000];
explain_message_errno_fopen(message, sizeof(message), err, path,

mode);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

279

explain_fopen(3) explain_fopen(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

path The original path, exactly as passed to thefopen(3) system call.

mode The original mode, exactly as passed to thefopen(3) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

280

explain_fopen_or_die(3) explain_fopen_or_die(3)

NAME
explain_fopen_or_die − open file and report errors

SYNOPSIS
#include <libexplain/fopen.h>

FILE *explain_fopen_or_die(const char *pathname, const char *flags);

DESCRIPTION
Theexplain_fopen_or_die() function opens the file whose name is the string pointed to by pathname and
associates a stream with it. Seefopen(3) for more information.

This is a quick and simple way for programs to constitently report file open errors in a consistent and
detailed fahion.

RETURN VALUE
Upon successful completionexplain_fopen_or_diereturns aFILE pointer.

If an error occurs,explain_fopenwill be called to explain the error, which will be printed ontostderr, and
then the process will terminate by callingexit(EXIT_FAILURE) .

SEE ALSO
fopen(3) stream open functions

explain_fopen(3)
explain fopen(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

281

explain_fork(3) explain_fork(3)

NAME
explain_fork − explain fork(2) errors

SYNOPSIS
#include <libexplain/fork.h>

const char *explain_fork(void);
const char *explain_errno_fork(int errnum);
void explain_message_fork(char *message, int message_size);
void explain_message_errno_fork(char *message, int message_size, int errnum);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefork(2) system call.

explain_fork
const char *explain_fork(void);

Theexplain_fork function is used to obtain an explanation of an error returned by thefork(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)
{

fprintf(stderr, "%s\n", explain_fork());
exit(EXIT_FAILURE);

}

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fork
const char *explain_errno_fork(int errnum);

The explain_errno_fork function is used to obtain an explanation of an error returned by thefork(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fork(err,));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

282

explain_fork(3) explain_fork(3)

explain_message_fork
void explain_message_fork(char *message, int message_size);

The explain_message_forkfunction may be used to obtain an explanation of an error returned by the
fork(2) system call.The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)
{

char message[3000];
explain_message_fork(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

explain_message_errno_fork
void explain_message_errno_fork(char *message, int message_size, int errnum);

The explain_message_errno_forkfunction may be used to obtain an explanation of an error returned by
the fork(2) system call. The least the message will contain is the value of strerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fork() < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fork(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

SEE ALSO
fork(2) create a child process

explain_fork_or_die(3)
create a child process and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

283

explain_fork_or_die(3) explain_fork_or_die(3)

NAME
explain_fork_or_die − create a child process and report errors

SYNOPSIS
#include <libexplain/fork.h>

void explain_fork_or_die(void);

DESCRIPTION
Theexplain_fork_or_die function is used to call thefork(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_fork(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_fork_or_die();

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fork(2) create a child process

explain_fork(3)
explain fork(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

284

explain_fpathconf(3) explain_fpathconf(3)

NAME
explain_fpathconf − explain fpathconf(3) errors

SYNOPSIS
#include <libexplain/fpathconf.h>

const char *explain_fpathconf(int fildes, int name);
const char *explain_errno_fpathconf(int errnum, int fildes, int name);
void explain_message_fpathconf(char *message, int message_size, int fildes, int name);
void explain_message_errno_fpathconf(char *message, int message_size, int errnum, int fildes, int name);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefpathconf(3) system call.

explain_fpathconf
const char *explain_fpathconf(int fildes, int name);

The explain_fpathconf function is used to obtain an explanation of an error returned by thefpathconf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)
{

fprintf(stderr, "%s\n", explain_fpathconf(fildes, name));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fpathconf_or_die(3) function.

fildes The original fildes, exactly as passed to thefpathconf(3) system call.

name The original name, exactly as passed to thefpathconf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fpathconf
const char *explain_errno_fpathconf(int errnum, int fildes, int name);

The explain_errno_fpathconf function is used to obtain an explanation of an error returned by the
fpathconf(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fpathconf(err, fildes, name));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fpathconf_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

285

explain_fpathconf(3) explain_fpathconf(3)

fildes The original fildes, exactly as passed to thefpathconf(3) system call.

name The original name, exactly as passed to thefpathconf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fpathconf
void explain_message_fpathconf(char *message, int message_size, int fildes, int name);

The explain_message_fpathconffunction may be used toobtain an explanation of an error returned by
the fpathconf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)
{

char message[3000];
explain_message_fpathconf(message, sizeof(message), fildes, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fpathconf_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefpathconf(3) system call.

name The original name, exactly as passed to thefpathconf(3) system call.

explain_message_errno_fpathconf
void explain_message_errno_fpathconf(char *message, int message_size, int errnum, int fildes, int name);

Theexplain_message_errno_fpathconffunction may be used to obtain an explanation of an error returned
by thefpathconf(3) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fpathconf(fildes, name) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fpathconf(message, sizeof(message),

err, fildes, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fpathconf_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

286

explain_fpathconf(3) explain_fpathconf(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefpathconf(3) system call.

name The original name, exactly as passed to thefpathconf(3) system call.

SEE ALSO
fpathconf(3)

get configuration values for files

explain_fpathconf_or_die(3)
get configuration values for files and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

287

explain_fpathconf_or_die(3) explain_fpathconf_or_die(3)

NAME
explain_fpathconf_or_die − get file configuration and report errors

SYNOPSIS
#include <libexplain/fpathconf.h>

long explain_fpathconf_or_die(int fildes, int name);

DESCRIPTION
The explain_fpathconf_or_die function is used to call thefpathconf(3) system call. On failure an
explanation will be printed tostderr, obtained fromexplain_fpathconf(3), and then the process terminates
by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
long result = explain_fpathconf_or_die(fildes, name);

fildes The fildes, exactly as to be passed to thefpathconf(3) system call.

name The name, exactly as to be passed to thefpathconf(3) system call.

Returns: This function only returns on success, seefpathconf(3) for more information. On failure, prints
an explanation and exits.

SEE ALSO
fpathconf(3)

get configuration values for files

explain_fpathconf(3)
explain fpathconf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

288

explain_fprintf(3) explain_fprintf(3)

NAME
explain_fprintf − explainfprintf(3) errors

SYNOPSIS
#include <libexplain/fprintf.h>

const char *explain_fprintf(FILE *fp, const char *format, ...);
const char *explain_errno_fprintf(int errnum, FILE *fp, const char *format, ...);
void explain_message_fprintf(char *message, int message_size, FILE *fp, const char *format,);
void explain_message_errno_fprintf(char *message, int message_size, int errnum, FILE *fp, const char
*format, ...);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefprintf(3) system call.

explain_fprintf
const char *explain_fprintf(FILE *fp, const char *format, ...);

Theexplain_fprintf function is used to obtain an explanation of an error returned by thefprintf(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefprintf(3) system call.

format The original format, exactly as passed to thefprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = fprintf(fp, format, ...);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_fprintf(fp, format, ...));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fprintf_or_die(3) function.

explain_errno_fprintf
const char *explain_errno_fprintf(int errnum, FILE *fp, const char *format, ...);

The explain_errno_fprintf function is used to obtain an explanation of an error returned by thefprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefprintf(3) system call.

format The original format, exactly as passed to thefprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

289

explain_fprintf(3) explain_fprintf(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = fprintf(fp, format, ...);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fprintf(err, fp, format,
...));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fprintf_or_die(3) function.

explain_message_fprintf
void explain_message_fprintf(char *message, int message_size, FILE *fp, const char *format, ...);

The explain_message_fprintf function is used to obtain an explanation of an error returned by the
fprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefprintf(3) system call.

format The original format, exactly as passed to thefprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = fprintf(fp, format, ...);
if (result < 0)
{

char message[3000];
explain_message_fprintf(message, sizeof(message), fp, format,
...);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fprintf_or_die(3) function.

explain_message_errno_fprintf
void explain_message_errno_fprintf(char *message, int message_size, int errnum, FILE *fp, const char
*format, ...);

The explain_message_errno_fprintffunction is used to obtain an explanation of an error returned by the
fprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

290

explain_fprintf(3) explain_fprintf(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefprintf(3) system call.

format The original format, exactly as passed to thefprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = fprintf(fp, format, ...);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fprintf(message, sizeof(message), err,
fp, format, ...);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fprintf_or_die(3) function.

SEE ALSO
fprintf(3)

formatted output conversion

explain_fprintf_or_die(3)
formatted output conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

291

explain_fprintf_or_die(3) explain_fprintf_or_die(3)

NAME
explain_fprintf_or_die − formatted output conversion and report errors

SYNOPSIS
#include <libexplain/fprintf.h>

int explain_fprintf_or_die(FILE *fp, const char *format, ...);
int explain_fprintf_on_error(FILE *fp, const char *format, ...);

DESCRIPTION
The explain_fprintf_or_die function is used to call thefprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fprintf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_fprintf_on_error function is used to call thefprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fprintf(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thefprintf(3) system call.

format The format, exactly as to be passed to thefprintf(3) system call.

RETURN VALUE
The explain_fprintf_or_die function only returns on success, seefprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fprintf_on_error function always returns the value return by the wrappedfprintf(3) system
call.

EXAMPLE
Theexplain_fprintf_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_fprintf_or_die(fp, format, ...);

SEE ALSO
fprintf(3)

formatted output conversion

explain_fprintf(3)
explain fprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

292

explain_fpurge(3) explain_fpurge(3)

NAME
explain_fpurge − explainfpurge(3) errors

SYNOPSIS
#include <libexplain/fpurge.h>

const char *explain_fpurge(FILE *fp);
const char *explain_errno_fpurge(int errnum, FILE *fp);
void explain_message_fpurge(char *message, int message_size, FILE *fp);
void explain_message_errno_fpurge(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefpurge(3) system call.

explain_fpurge
const char *explain_fpurge(FILE *fp);

Theexplain_fpurge function is used to obtain an explanation of an error returned by thefpurge(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefpurge(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)
{

fprintf(stderr, "%s\n", explain_fpurge(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fpurge_or_die(3) function.

explain_errno_fpurge
const char *explain_errno_fpurge(int errnum, FILE *fp);

The explain_errno_fpurge function is used to obtain an explanation of an error returned by thefpurge(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefpurge(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)
{

293

explain_fpurge(3) explain_fpurge(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fpurge(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fpurge_or_die(3) function.

explain_message_fpurge
void explain_message_fpurge(char *message, int message_size, FILE *fp);

The explain_message_fpurgefunction is used to obtain an explanation of an error returned by the
fpurge(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefpurge(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)
{

char message[3000];
explain_message_fpurge(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fpurge_or_die(3) function.

explain_message_errno_fpurge
void explain_message_errno_fpurge(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_fpurgefunction is used to obtain an explanation of an error returned by the
fpurge(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefpurge(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fpurge(fp) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fpurge(message, sizeof(message), err,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

294

explain_fpurge(3) explain_fpurge(3)

The above code example is available pre-packaged as theexplain_fpurge_or_die(3) function.

SEE ALSO
fpurge(3)

purge a stream

explain_fpurge_or_die(3)
purge a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

295

explain_fpurge_or_die(3) explain_fpurge_or_die(3)

NAME
explain_fpurge_or_die − purge a stream and report errors

SYNOPSIS
#include <libexplain/fpurge.h>

void explain_fpurge_or_die(FILE *fp);
int explain_fpurge_on_error(FILE *fp);

DESCRIPTION
The explain_fpurge_or_die function is used to call thefpurge(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fpurge(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_fpurge_on_error function is used to call thefpurge(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fpurge(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thefpurge(3) system call.

RETURN VALUE
The explain_fpurge_or_die function only returns on success, seefpurge(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fpurge_on_error function always returns the value return by the wrappedfpurge(3) system
call.

EXAMPLE
Theexplain_fpurge_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fpurge_or_die(fp);

SEE ALSO
fpurge(3)

purge a stream

explain_fpurge(3)
explain fpurge(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

296

explain_fputc(3) explain_fputc(3)

NAME
explain_fputc − explain fputc(3) errors

SYNOPSIS
#include <libexplain/fputc.h>

const char *explain_fputc(int c, FILE *fp);
const char *explain_errno_fputc(int errnum, int c, FILE *fp);
void explain_message_fputc(char *message, int message_size, int c, FILE *fp);
void explain_message_errno_fputc(char *message, int message_size, int errnum, int c, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefputc(3) system call.

explain_fputc
const char *explain_fputc(int c, FILE *fp);

The explain_fputc function is used to obtain an explanation of an error returned by thefputc(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)
{

fprintf(stderr, "%s\n", explain_fputc(c, fp));
exit(EXIT_FAILURE);

}

c The original c, exactly as passed to thefputc(3) system call.

fp The original fp, exactly as passed to thefputc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fputc
const char *explain_errno_fputc(int errnum, int c, FILE *fp);

The explain_errno_fputc function is used to obtain an explanation of an error returned by thefputc(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fputc(err, c, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

c The original c, exactly as passed to thefputc(3) system call.

fp The original fp, exactly as passed to thefputc(3) system call.

297

explain_fputc(3) explain_fputc(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fputc
void explain_message_fputc(char *message, int message_size, int c, FILE *fp);

The explain_message_fputcfunction may be used to obtain an explanation of an error returned by the
fputc(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)
{

char message[3000];
explain_message_fputc(message, sizeof(message), c, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

c The original c, exactly as passed to thefputc(3) system call.

fp The original fp, exactly as passed to thefputc(3) system call.

explain_message_errno_fputc
void explain_message_errno_fputc(char *message, int message_size, int errnum, int c, FILE *fp);

Theexplain_message_errno_fputcfunction may be used to obtain an explanation of an error returned by
the fputc(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fputc(c, fp) == EOF)
{

int err = errno;
char message[3000];
explain_message_errno_fputc(message, sizeof(message), err, c, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

c The original c, exactly as passed to thefputc(3) system call.

298

explain_fputc(3) explain_fputc(3)

fp The original fp, exactly as passed to thefputc(3) system call.

SEE ALSO
fputc(3) output of characters

explain_fputc_or_die(3)
output of characters and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

299

explain_fputc_or_die(3) explain_fputc_or_die(3)

NAME
explain_fputc_or_die − output of characters and report errors

SYNOPSIS
#include <libexplain/fputc.h>

void explain_fputc_or_die(int c, FILE *fp);

DESCRIPTION
Theexplain_fputc_or_die function is used to call thefputc(3) system call.On failure an explanation will
be printed to stderr, obtained from explain_fputc(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_fputc_or_die(c, fp);

c The c, exactly as to be passed to thefputc(3) system call.

fp The fp, exactly as to be passed to thefputc(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fputc(3) output of characters

explain_fputc(3)
explain fputc(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

300

explain_fputs(3) explain_fputs(3)

NAME
explain_fputs − explainfputs(3) errors

SYNOPSIS
#include <libexplain/fputs.h>

const char *explain_fputs(const char *s, FILE *fp);
const char *explain_errno_fputs(int errnum, const char *s, FILE *fp);
void explain_message_fputs(char *message, int message_size, const char *s, FILE *fp);
void explain_message_errno_fputs(char *message, int message_size, int errnum, const char *s, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefputs(3) system call.

explain_fputs
const char *explain_fputs(const char *s, FILE *fp);

Theexplain_fputs function is used to obtain an explanation of an error returned by thefputs(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

s The original s, exactly as passed to thefputs(3) system call.

fp The original fp, exactly as passed to thefputs(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{

fprintf(stderr, "%s\n", explain_fputs(s, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fputs_or_die(3) function.

explain_errno_fputs
const char *explain_errno_fputs(int errnum, const char *s, FILE *fp);

The explain_errno_fputs function is used to obtain an explanation of an error returned by thefputs(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

s The original s, exactly as passed to thefputs(3) system call.

fp The original fp, exactly as passed to thefputs(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

301

explain_fputs(3) explain_fputs(3)

if (fputs(s, fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fputs(err, s, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fputs_or_die(3) function.

explain_message_fputs
void explain_message_fputs(char *message, int message_size, const char *s, FILE *fp);

The explain_message_fputsfunction is used to obtain an explanation of an error returned by thefputs(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

s The original s, exactly as passed to thefputs(3) system call.

fp The original fp, exactly as passed to thefputs(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{

char message[3000];
explain_message_fputs(message, sizeof(message), s, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fputs_or_die(3) function.

explain_message_errno_fputs
void explain_message_errno_fputs(char *message, int message_size, int errnum, const char *s, FILE *fp);

The explain_message_errno_fputsfunction is used to obtain an explanation of an error returned by the
fputs(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

s The original s, exactly as passed to thefputs(3) system call.

fp The original fp, exactly as passed to thefputs(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fputs(s, fp) < 0)
{

int err = errno;
char message[3000];

302

explain_fputs(3) explain_fputs(3)

explain_message_errno_fputs(message, sizeof(message), err, s,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fputs_or_die(3) function.

SEE ALSO
fputs(3) write a string to a stream

explain_fputs_or_die(3)
write a string to a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

303

explain_fputs_or_die(3) explain_fputs_or_die(3)

NAME
explain_fputs_or_die − write a string to a stream and report errors

SYNOPSIS
#include <libexplain/fputs.h>

void explain_fputs_or_die(const char *s, FILE *fp);
int explain_fputs_on_error(const char *s, FILE *fp);

DESCRIPTION
The explain_fputs_or_die function is used to call thefputs(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fputs(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_fputs_on_error function is used to call thefputs(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fputs(3) function, but still returns to the caller.

s The s, exactly as to be passed to thefputs(3) system call.

fp The fp, exactly as to be passed to thefputs(3) system call.

RETURN VALUE
Theexplain_fputs_or_diefunction only returns on success, seefputs(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_fputs_on_error function always returns the value return by the wrappedfputs(3) system call.

EXAMPLE
Theexplain_fputs_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fputs_or_die(s, fp);

SEE ALSO
fputs(3) write a string to a stream

explain_fputs(3)
explain fputs(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

304

explain_fread(3) explain_fread(3)

NAME
explain_fread − explain fread(3) errors

SYNOPSIS
#include <libexplain/fread.h>

const char *explain_fread(void *ptr, size_t size, size_t nmemb, FILE *fp);
const char *explain_errno_fread(int errnum, void *ptr, size_t size, size_t nmemb, FILE *fp);
void explain_message_fread(char *message, int message_size, void *ptr, size_t size, size_t nmemb, FILE
*fp);
void explain_message_errno_fread(char *message, int message_size, int errnum, void *ptr, size_t size,
size_t nmemb, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefread(3) system call.

explain_fread
const char *explain_fread(void *ptr, size_t size, size_t nmemb, FILE *fp);

The explain_fread function is used to obtain an explanation of an error returned by thefread(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))
{

fprintf(stderr, "%s\n", explain_fread(ptr, size, nmemb, fp));
exit(EXIT_FAILURE);

}

ptr The original ptr, exactly as passed to thefread(3) system call.

size The original size, exactly as passed to thefread(3) system call.

nmemb The original nmemb, exactly as passed to thefread(3) system call.

fp The original fp, exactly as passed to thefread(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fread
const char *explain_errno_fread(int errnum, void *ptr, size_t size, size_t nmemb, FILE *fp);

The explain_errno_fread function is used to obtain an explanation of an error returned by thefread(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fread(err, ptr, size, nmemb, fp));
exit(EXIT_FAILURE);

}

305

explain_fread(3) explain_fread(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ptr The original ptr, exactly as passed to thefread(3) system call.

size The original size, exactly as passed to thefread(3) system call.

nmemb The original nmemb, exactly as passed to thefread(3) system call.

fp The original fp, exactly as passed to thefread(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fread
void explain_message_fread(char *message, int message_size, void *ptr, size_t size, size_t nmemb, FILE
*fp);

The explain_message_freadfunction may be used to obtain an explanation of an error returned by the
fread(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))
{

char message[3000];
explain_message_fread(message, sizeof(message), ptr, size, nmemb, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

ptr The original ptr, exactly as passed to thefread(3) system call.

size The original size, exactly as passed to thefread(3) system call.

nmemb The original nmemb, exactly as passed to thefread(3) system call.

fp The original fp, exactly as passed to thefread(3) system call.

explain_message_errno_fread
void explain_message_errno_fread(char *message, int message_size, int errnum, void *ptr, size_t size,
size_t nmemb, FILE *fp);

Theexplain_message_errno_freadfunction may be used to obtain an explanation of an error returned by
the fread(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
size_t how_many = fread(ptr, size, nmemb, fp);
if (how_many == 0 && ferror(fp))
{

int err = errno;

306

explain_fread(3) explain_fread(3)

char message[3000];
explain_message_errno_fread(message, sizeof(message), err,

ptr, size, nmemb, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ptr The original ptr, exactly as passed to thefread(3) system call.

size The original size, exactly as passed to thefread(3) system call.

nmemb The original nmemb, exactly as passed to thefread(3) system call.

fp The original fp, exactly as passed to thefread(3) system call.

SEE ALSO
fread(3) binary stream input

explain_fread_or_die(3)
binary stream input and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

307

explain_fread_or_die(3) explain_fread_or_die(3)

NAME
explain_fread_or_die − binary stream input and report errors

SYNOPSIS
#include <libexplain/fread.h>

void explain_fread_or_die(void *ptr, size_t size, size_t nmemb, FILE *fp);

DESCRIPTION
Theexplain_fread_or_diefunction is used to call thefread(3) system call. On failure an explanation will
be printed to stderr, obtained from explain_fread(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
size_t how_many = explain_fread_or_die(ptr, size, nmemb, fp);

ptr The ptr, exactly as to be passed to thefread(3) system call.

size The size, exactly as to be passed to thefread(3) system call.

nmemb The nmemb, exactly as to be passed to thefread(3) system call.

fp The fp, exactly as to be passed to thefread(3) system call.

Returns: This function only returns on success, the number read or 0 on end-of-input.On failure, prints an
explanation and exits.

SEE ALSO
fread(3) binary stream input

explain_fread(3)
explain fread(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

308

explain_freopen(3) explain_freopen(3)

NAME
explain_freopen − explain freopen(3) errors

SYNOPSIS
#include <libexplain/freopen.h>
const char *explain_freopen(const char *pathname, const char *flags, FILE *fp);
const char *explain_errno_freopen(int errnum, const char *pathname, const char *flags, FILE *fp);
void explain_message_freopen(char *message, int message_size, const char *pathname, const char *flags,
FILE *fp);
void explain_message_errno_freopen(char *message, int message_size, int errnum, const char *pathname,
const char *flags, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations forfreopen(3) errors.

explain_freopen
const char *explain_freopen(const char *pathname, const char *flags, FILE *fp);

The explain_freopen function is used to obtain an explanation of an error returned by thefreopen(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (!freopen(pathname, flags, fp))
{

fprintf(stderr, ’%s0, explain_freopen(pathname, flags, fp));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thefreopen(3) system call.

flags The original flags, exactly as passed to thefreopen(3) system call.

fp The original fp, exactly as passed to thefreopen(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_freopen
const char *explain_errno_freopen(int errnum, const char *pathname, const char *flags, FILE *fp);

The explain_errno_freopen function is used to obtain an explanation of an error returned by thefreopen(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (freopen(pathname, flags, fp))
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_freopen(err, pathname,

flags, fp));
exit(EXIT_FAILURE);

}

309

explain_freopen(3) explain_freopen(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thefreopen(3) system call.

flags The original flags, exactly as passed to thefreopen(3) system call.

fp The original fp, exactly as passed to thefreopen(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_freopen
void explain_message_freopen(char *message, int message_size, const char *pathname, const char *flags,
FILE *fp);

The explain_message_freopen function is used to obtain an explanation of an error returned by the
freopen(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (!freopen(pathname, flags, fp))
{

char message[3000];
explain_message_freopen(message, sizeof(message), pathname, flags,

fp);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thefreopen(3) system call.

flags The original flags, exactly as passed to thefreopen(3) system call.

fp The original fp, exactly as passed to thefreopen(3) system call.

explain_message_errno_freopen
void explain_message_errno_freopen(char *message, int message_size, int errnum, const char *pathname,
const char *flags, FILE *fp);

The explain_message_errno_freopen function is used to obtain an explanation of an error returned by the
freopen(3) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (!freopen(pathname, flags, fp))
{

int err = errno;
char message[3000];
explain_message_errno_freopen(message, sizeof(message), err,

310

explain_freopen(3) explain_freopen(3)

pathname, flags, fp);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thefreopen(3) system call.

flags The original flags, exactly as passed to thefreopen(3) system call.

fp The original fp, exactly as passed to thefreopen(3) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

311

explain_freopen_or_die(3) explain_freopen_or_die(3)

NAME
explain_freopen_or_die − open file and report errors

SYNOPSIS
#include <libexplain/freopen.h>
void explain_freopen_or_die(const char *pathname, const char *flags, FILE *fp);

DESCRIPTION
The explain_freopen_or_die function is used to reopen a file via thefreopen(3) system call.On failure it
will print an explanation, obtained from thelinexplain_freopen(3) function, on the standard error stream
and then exit.

This function is intended to be used in a fashion similar to the following example:
explain_freopen_or_die(pathname, flags, fp);

pathname
The pathname, exactly as to be passed to thefreopen(3) system call.

flags The flags, exactly as to be passed to thefreopen(3) system call.

fp The fp, exactly as to be passed to thefreopen(3) system call.

Returns: Only ever return on success. Never returns on failure.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

312

explain_fseek(3) explain_fseek(3)

NAME
explain_fseek − explainfseek(3) errors

SYNOPSIS
#include <libexplain/fseek.h>

const char *explain_fseek(FILE *fp, long offset, int whence);
const char *explain_errno_fseek(int errnum, FILE *fp, long offset, int whence);
void explain_message_fseek(char *message, int message_size, FILE *fp, long offset, int whence);
void explain_message_errno_fseek(char *message, int message_size, int errnum, FILE *fp, long offset, int
whence);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefseek(3) system call.

explain_fseek
const char *explain_fseek(FILE *fp, long offset, int whence);

Theexplain_fseekfunction is used to obtain an explanation of an error returned by thefseek(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefseek(3) system call.

offset The original offset, exactly as passed to thefseek(3) system call.

whence The original whence, exactly as passed to thefseek(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)
{

fprintf(stderr, "%s\n", explain_fseek(fp, offset, whence));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fseek_or_die(3) function.

explain_errno_fseek
const char *explain_errno_fseek(int errnum, FILE *fp, long offset, int whence);

The explain_errno_fseekfunction is used to obtain an explanation of an error returned by thefseek(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefseek(3) system call.

offset The original offset, exactly as passed to thefseek(3) system call.

whence The original whence, exactly as passed to thefseek(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

313

explain_fseek(3) explain_fseek(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fseek(err, fp, offset,
whence));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fseek_or_die(3) function.

explain_message_fseek
void explain_message_fseek(char *message, int message_size, FILE *fp, long offset, int whence);

The explain_message_fseekfunction is used to obtain an explanation of an error returned by thefseek(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefseek(3) system call.

offset The original offset, exactly as passed to thefseek(3) system call.

whence The original whence, exactly as passed to thefseek(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)
{

char message[3000];
explain_message_fseek(message, sizeof(message), fp, offset,
whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fseek_or_die(3) function.

explain_message_errno_fseek
void explain_message_errno_fseek(char *message, int message_size, int errnum, FILE *fp, long offset, int
whence);

The explain_message_errno_fseekfunction is used to obtain an explanation of an error returned by the
fseek(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

314

explain_fseek(3) explain_fseek(3)

fp The original fp, exactly as passed to thefseek(3) system call.

offset The original offset, exactly as passed to thefseek(3) system call.

whence The original whence, exactly as passed to thefseek(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseek(fp, offset, whence) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fseek(message, sizeof(message), err, fp,
offset, whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fseek_or_die(3) function.

SEE ALSO
fseek(3) reposition a stream

explain_fseek_or_die(3)
reposition a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

315

explain_fseeko(3) explain_fseeko(3)

NAME
explain_fseeko − explain fseeko(3) errors

SYNOPSIS
#include <libexplain/fseeko.h>

const char *explain_fseeko(FILE *fp, off_t offset, int whence);
const char *explain_errno_fseeko(int errnum, FILE *fp, off_t offset, int whence);
void explain_message_fseeko(char *message, int message_size, FILE *fp, off_t offset, int whence);
void explain_message_errno_fseeko(char *message, int message_size, int errnum, FILE *fp, off_t offset,
int whence);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefseeko(3) system call.

explain_fseeko
const char *explain_fseeko(FILE *fp, off_t offset, int whence);

The explain_fseekofunction is used to obtain an explanation of an error returned by thefseeko(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefseeko(3) system call.

offset The original offset, exactly as passed to thefseeko(3) system call.

whence The original whence, exactly as passed to thefseeko(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseeko(fp, offset, whence) < 0)
{

fprintf(stderr, "%s\n", explain_fseeko(fp, offset, whence));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fseeko_or_die(3) function.

explain_errno_fseeko
const char *explain_errno_fseeko(int errnum, FILE *fp, off_t offset, int whence);

The explain_errno_fseekofunction is used to obtain an explanation of an error returned by thefseeko(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefseeko(3) system call.

offset The original offset, exactly as passed to thefseeko(3) system call.

whence The original whence, exactly as passed to thefseeko(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

316

explain_fseeko(3) explain_fseeko(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseeko(fp, offset, whence) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fseeko(err, fp, offset,
whence));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fseeko_or_die(3) function.

explain_message_fseeko
void explain_message_fseeko(char *message, int message_size, FILE *fp, off_t offset, int whence);

The explain_message_fseekofunction is used to obtain an explanation of an error returned by the
fseeko(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefseeko(3) system call.

offset The original offset, exactly as passed to thefseeko(3) system call.

whence The original whence, exactly as passed to thefseeko(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseeko(fp, offset, whence) < 0)
{

char message[3000];
explain_message_fseeko(message, sizeof(message), fp, offset,
whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fseeko_or_die(3) function.

explain_message_errno_fseeko
void explain_message_errno_fseeko(char *message, int message_size, int errnum, FILE *fp, off_t offset,
int whence);

The explain_message_errno_fseekofunction is used to obtain an explanation of an error returned by the
fseeko(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

317

explain_fseeko(3) explain_fseeko(3)

fp The original fp, exactly as passed to thefseeko(3) system call.

offset The original offset, exactly as passed to thefseeko(3) system call.

whence The original whence, exactly as passed to thefseeko(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fseeko(fp, offset, whence) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fseeko(message, sizeof(message), err,
fp, offset, whence);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fseeko_or_die(3) function.

SEE ALSO
fseeko(3)

seek to or report file position

explain_fseeko_or_die(3)
seek to or report file position and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

318

explain_fseeko_or_die(3) explain_fseeko_or_die(3)

NAME
explain_fseeko_or_die − seek to or report file position and report errors

SYNOPSIS
#include <libexplain/fseeko.h>

void explain_fseeko_or_die(FILE *fp, off_t offset, int whence);
int explain_fseeko_on_error(FILE *fp, off_t offset, int whence);

DESCRIPTION
Theexplain_fseeko_or_diefunction is used to call thefseeko(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fseeko(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_fseeko_on_errorfunction is used to call thefseeko(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fseeko(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thefseeko(3) system call.

offset The offset, exactly as to be passed to thefseeko(3) system call.

whence The whence, exactly as to be passed to thefseeko(3) system call.

RETURN VALUE
The explain_fseeko_or_diefunction only returns on success, seefseeko(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fseeko_on_errorfunction always returns the value return by the wrappedfseeko(3) system
call.

EXAMPLE
Theexplain_fseeko_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fseeko_or_die(fp, offset, whence);

SEE ALSO
fseeko(3)

seek to or report file position

explain_fseeko(3)
explain fseeko(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

319

explain_fseek_or_die(3) explain_fseek_or_die(3)

NAME
explain_fseek_or_die − reposition a stream and report errors

SYNOPSIS
#include <libexplain/fseek.h>

void explain_fseek_or_die(FILE *fp, long offset, int whence);
int explain_fseek_on_error(FILE *fp, long offset, int whence);

DESCRIPTION
The explain_fseek_or_diefunction is used to call thefseek(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fseek(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_fseek_on_errorfunction is used to call thefseek(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fseek(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thefseek(3) system call.

offset The offset, exactly as to be passed to thefseek(3) system call.

whence The whence, exactly as to be passed to thefseek(3) system call.

RETURN VALUE
Theexplain_fseek_or_diefunction only returns on success, seefseek(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_fseek_on_errorfunction always returns the value return by the wrappedfseek(3) system call.

EXAMPLE
Theexplain_fseek_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fseek_or_die(fp, offset, whence);

SEE ALSO
fseek(3) reposition a stream

explain_fseek(3)
explain fseek(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

320

explain_fsetpos(3) explain_fsetpos(3)

NAME
explain_fsetpos − explainfsetpos(3) errors

SYNOPSIS
#include <libexplain/fsetpos.h>

const char *explain_fsetpos(FILE *fp, fpos_t *pos);
const char *explain_errno_fsetpos(int errnum, FILE *fp, fpos_t *pos);
void explain_message_fsetpos(char *message, int message_size, FILE *fp, fpos_t *pos);
void explain_message_errno_fsetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefsetpos(3) system call.

explain_fsetpos
const char *explain_fsetpos(FILE *fp, fpos_t *pos);

Theexplain_fsetposfunction is used to obtain an explanation of an error returned by thefsetpos(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thefsetpos(3) system call.

pos The original pos, exactly as passed to thefsetpos(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{

fprintf(stderr, "%s\n", explain_fsetpos(fp, pos));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fsetpos_or_die(3) function.

explain_errno_fsetpos
const char *explain_errno_fsetpos(int errnum, FILE *fp, fpos_t *pos);

Theexplain_errno_fsetposfunction is used to obtain an explanation of an error returned by thefsetpos(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefsetpos(3) system call.

pos The original pos, exactly as passed to thefsetpos(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

321

explain_fsetpos(3) explain_fsetpos(3)

if (fsetpos(fp, pos) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fsetpos(err, fp, pos));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fsetpos_or_die(3) function.

explain_message_fsetpos
void explain_message_fsetpos(char *message, int message_size, FILE *fp, fpos_t *pos);

The explain_message_fsetposfunction is used to obtain an explanation of an error returned by the
fsetpos(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thefsetpos(3) system call.

pos The original pos, exactly as passed to thefsetpos(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{

char message[3000];
explain_message_fsetpos(message, sizeof(message), fp, pos);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fsetpos_or_die(3) function.

explain_message_errno_fsetpos
void explain_message_errno_fsetpos(char *message, int message_size, int errnum, FILE *fp, fpos_t *pos);

Theexplain_message_errno_fsetposfunction is used to obtain an explanation of an error returned by the
fsetpos(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thefsetpos(3) system call.

pos The original pos, exactly as passed to thefsetpos(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsetpos(fp, pos) < 0)
{

int err = errno;
char message[3000];

322

explain_fsetpos(3) explain_fsetpos(3)

explain_message_errno_fsetpos(message, sizeof(message), err,
fp, pos);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fsetpos_or_die(3) function.

SEE ALSO
fsetpos(3)

reposition a stream

explain_fsetpos_or_die(3)
reposition a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

323

explain_fsetpos_or_die(3) explain_fsetpos_or_die(3)

NAME
explain_fsetpos_or_die − reposition a stream and report errors

SYNOPSIS
#include <libexplain/fsetpos.h>

void explain_fsetpos_or_die(FILE *fp, fpos_t *pos);
int explain_fsetpos_on_error(FILE *fp, fpos_t *pos);

DESCRIPTION
The explain_fsetpos_or_diefunction is used to call thefsetpos(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fsetpos(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_fsetpos_on_errorfunction is used to call thefsetpos(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fsetpos(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thefsetpos(3) system call.

pos The pos, exactly as to be passed to thefsetpos(3) system call.

RETURN VALUE
The explain_fsetpos_or_diefunction only returns on success, seefsetpos(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fsetpos_on_errorfunction always returns the value return by the wrappedfsetpos(3) system
call.

EXAMPLE
Theexplain_fsetpos_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fsetpos_or_die(fp, pos);

SEE ALSO
fsetpos(3)

reposition a stream

explain_fsetpos(3)
explain fsetpos(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

324

explain_fstat(3) explain_fstat(3)

NAME
explain_fstat − explain fstat(2) errors

SYNOPSIS
#include <libexplain/fstat.h>

const char *explain_fstat(int fildes, struct stat *buf);
const char *explain_errno_fstat(int errnum, int fildes, struct stat *buf);
void explain_message_fstat(char *message, int message_size, int fildes, struct stat *buf);
void explain_message_errno_fstat(char *message, int message_size, int errnum, int fildes, struct stat *buf);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefstat(2) system call.

explain_fstat
const char *explain_fstat(int fildes, struct stat *buf);

Theexplain_fstat function is used to obtain an explanation of an error returned by thefstat(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)
{

fprintf(stderr, "%s\n", explain_fstat(fildes, buf));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to thefstat(2) system call.

buf The original buf, exactly as passed to thefstat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fstat
const char *explain_errno_fstat(int errnum, int fildes, struct stat *buf);

The explain_errno_fstat function is used to obtain an explanation of an error returned by thefstat(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstat(err, fildes, buf));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefstat(2) system call.

buf The original buf, exactly as passed to thefstat(2) system call.

325

explain_fstat(3) explain_fstat(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fstat
void explain_message_fstat(char *message, int message_size, int fildes, struct stat *buf);

The explain_message_fstatfunction may be used to obtain an explanation of an error returned by the
fstat(2) system call.The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)
{

char message[3000];
explain_message_fstat(message, sizeof(message), fildes, buf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefstat(2) system call.

buf The original buf, exactly as passed to thefstat(2) system call.

explain_message_errno_fstat
void explain_message_errno_fstat(char *message, int message_size, int errnum, int fildes, struct stat *buf);

The explain_message_errno_fstatfunction may be used to obtain an explanation of an error returned by
the fstat(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fstat(fildes, buf) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fstat(message, sizeof(message), err, fildes, buf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefstat(2) system call.

326

explain_fstat(3) explain_fstat(3)

buf The original buf, exactly as passed to thefstat(2) system call.

SEE ALSO
fstat(2) get file status

explain_fstat_or_die(3)
get file status and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

327

explain_fstatat(3) explain_fstatat(3)

NAME
explain_fstatat − explainfstatat(2) errors

SYNOPSIS
#include <libexplain/fstatat.h>

const char *explain_fstatat(int fildes, const char *pathname, struct stat *data, int flags);
const char *explain_errno_fstatat(int errnum, int fildes, const char *pathname, struct stat *data, int flags);
void explain_message_fstatat(char *message, int message_size, int fildes, const char *pathname, struct stat
*data, int flags);
void explain_message_errno_fstatat(char *message, int message_size, int errnum, int fildes, const char
*pathname, struct stat *data, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefstatat(2) system call.

explain_fstatat
const char *explain_fstatat(int fildes, const char *pathname, struct stat *data, int flags);

Theexplain_fstatat function is used to obtain an explanation of an error returned by thefstatat(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thefstatat(2) system call.

pathname
The original pathname, exactly as passed to thefstatat(2) system call.

data The original data, exactly as passed to thefstatat(2) system call.

flags The original flags, exactly as passed to thefstatat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatat(fildes, pathname, data, flags) < 0)
{

fprintf(stderr, "%s\n", explain_fstatat(fildes, pathname,
data, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fstatat_or_die(3) function.

explain_errno_fstatat
const char *explain_errno_fstatat(int errnum, int fildes, const char *pathname, struct stat *data, int flags);

The explain_errno_fstatat function is used to obtain an explanation of an error returned by thefstatat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefstatat(2) system call.

328

explain_fstatat(3) explain_fstatat(3)

pathname
The original pathname, exactly as passed to thefstatat(2) system call.

data The original data, exactly as passed to thefstatat(2) system call.

flags The original flags, exactly as passed to thefstatat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatat(fildes, pathname, data, flags) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstatat(err, fildes,
pathname, data, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fstatat_or_die(3) function.

explain_message_fstatat
void explain_message_fstatat(char *message, int message_size, int fildes, const char *pathname, struct stat
*data, int flags);

The explain_message_fstatatfunction is used to obtain an explanation of an error returned by the
fstatat(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefstatat(2) system call.

pathname
The original pathname, exactly as passed to thefstatat(2) system call.

data The original data, exactly as passed to thefstatat(2) system call.

flags The original flags, exactly as passed to thefstatat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatat(fildes, pathname, data, flags) < 0)
{

char message[3000];
explain_message_fstatat(message, sizeof(message), fildes,
pathname, data, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fstatat_or_die(3) function.

explain_message_errno_fstatat
void explain_message_errno_fstatat(char *message, int message_size, int errnum, int fildes, const char
*pathname, struct stat *data, int flags);

329

explain_fstatat(3) explain_fstatat(3)

The explain_message_errno_fstatatfunction is used to obtain an explanation of an error returned by the
fstatat(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefstatat(2) system call.

pathname
The original pathname, exactly as passed to thefstatat(2) system call.

data The original data, exactly as passed to thefstatat(2) system call.

flags The original flags, exactly as passed to thefstatat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatat(fildes, pathname, data, flags) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fstatat(message, sizeof(message), err,
fildes, pathname, data, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_fstatat_or_die(3) function.

SEE ALSO
fstatat(2)

get file status relative to a directory file descriptor

explain_fstatat_or_die(3)
get file status relative to a directory file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

330

explain_fstatat_or_die(3) explain_fstatat_or_die(3)

NAME
explain_fstatat_or_die − get file status relative to a dir fd and report errors

SYNOPSIS
#include <libexplain/fstatat.h>

void explain_fstatat_or_die(int fildes, const char *pathname, struct stat *data, int flags);
int explain_fstatat_on_error(int fildes, const char *pathname, struct stat *data, int flags);

DESCRIPTION
The explain_fstatat_or_die function is used to call thefstatat(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fstatat(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_fstatat_on_error function is used to call thefstatat(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fstatat(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thefstatat(2) system call.

pathname
The pathname, exactly as to be passed to thefstatat(2) system call.

data The data, exactly as to be passed to thefstatat(2) system call.

flags The flags, exactly as to be passed to thefstatat(2) system call.

RETURN VALUE
The explain_fstatat_or_die function only returns on success, seefstatat(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fstatat_on_error function always returns the value return by the wrappedfstatat(2) system
call.

EXAMPLE
Theexplain_fstatat_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fstatat_or_die(fildes, pathname, data, flags);

SEE ALSO
fstatat(2)

get file status relative to a directory file descriptor

explain_fstatat(3)
explain fstatat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

331

explain_fstatfs(3) explain_fstatfs(3)

NAME
explain_fstatfs − explain fstatfs(2) errors

SYNOPSIS
#include <libexplain/fstatfs.h>

const char *explain_fstatfs(int fildes, struct statfs *data);
const char *explain_errno_fstatfs(int errnum, int fildes, struct statfs *data);
void explain_message_fstatfs(char *message, int message_size, int fildes, struct statfs *data);
void explain_message_errno_fstatfs(char *message, int message_size, int errnum, int fildes, struct statfs
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefstatfs(2) system call.

explain_fstatfs
const char *explain_fstatfs(int fildes, struct statfs *data);

The explain_fstatfs function is used to obtain an explanation of an error returned by thefstatfs(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thefstatfs(2) system call.

data The original data, exactly as passed to thefstatfs(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)
{

fprintf(stderr, "%s\n", explain_fstatfs(fildes, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fstatfs_or_die(3) function.

explain_errno_fstatfs
const char *explain_errno_fstatfs(int errnum, int fildes, struct statfs *data);

The explain_errno_fstatfs function is used to obtain an explanation of an error returned by thefstatfs(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefstatfs(2) system call.

data The original data, exactly as passed to thefstatfs(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

332

explain_fstatfs(3) explain_fstatfs(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstatfs(err, fildes,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fstatfs_or_die(3) function.

explain_message_fstatfs
void explain_message_fstatfs(char *message, int message_size, int fildes, struct statfs *data);

Theexplain_message_fstatfsfunction is used to obtain an explanation of an error returned by thefstatfs(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefstatfs(2) system call.

data The original data, exactly as passed to thefstatfs(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatfs(fildes, data) < 0)
{

char message[3000];
explain_message_fstatfs(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fstatfs_or_die(3) function.

explain_message_errno_fstatfs
void explain_message_errno_fstatfs(char *message, int message_size, int errnum, int fildes, struct statfs
*data);

The explain_message_errno_fstatfsfunction is used to obtain an explanation of an error returned by the
fstatfs(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefstatfs(2) system call.

data The original data, exactly as passed to thefstatfs(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:

333

explain_fstatfs(3) explain_fstatfs(3)

if (fstatfs(fildes, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fstatfs(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fstatfs_or_die(3) function.

SEE ALSO
fstatfs(2)

get file system statistics

explain_fstatfs_or_die(3)
get file system statistics and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

334

explain_fstatfs_or_die(3) explain_fstatfs_or_die(3)

NAME
explain_fstatfs_or_die − get file system statistics and report errors

SYNOPSIS
#include <libexplain/fstatfs.h>

void explain_fstatfs_or_die(int fildes, struct statfs *data);
int explain_fstatfs_on_error(int fildes, struct statfs *data);

DESCRIPTION
Theexplain_fstatfs_or_diefunction is used to call thefstatfs(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fstatfs(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_fstatfs_on_error function is used to call thefstatfs(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fstatfs(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thefstatfs(2) system call.

data The data, exactly as to be passed to thefstatfs(2) system call.

RETURN VALUE
The explain_fstatfs_or_die function only returns on success, seefstatfs(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_fstatfs_on_error function always returns the value return by the wrappedfstatfs(2) system
call.

EXAMPLE
Theexplain_fstatfs_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fstatfs_or_die(fildes, data);

SEE ALSO
fstatfs(2)

get file system statistics

explain_fstatfs(3)
explain fstatfs(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

335

explain_fstat_or_die(3) explain_fstat_or_die(3)

NAME
explain_fstat_or_die − get file status and report errors

SYNOPSIS
#include <libexplain/fstat.h>

void explain_fstat_or_die(int fildes, struct stat *buf);

DESCRIPTION
Theexplain_fstat_or_diefunction is used to call thefstat(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_fstat(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_fstat_or_die(fildes, buf);

fildes The fildes, exactly as to be passed to thefstat(2) system call.

buf The buf, exactly as to be passed to thefstat(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fstat(2) get file status

explain_fstat(3)
explain fstat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

336

explain_fstatvfs(3) explain_fstatvfs(3)

NAME
explain_fstatvfs − explainfstatvfs(2) errors

SYNOPSIS
#include <libexplain/fstatvfs.h>

const char *explain_fstatvfs(int fildes, struct statvfs *data);
const char *explain_errno_fstatvfs(int errnum, int fildes, struct statvfs *data);
void explain_message_fstatvfs(char *message, int message_size, int fildes, struct statvfs *data);
void explain_message_errno_fstatvfs(char *message, int message_size, int errnum, int fildes, struct statvfs
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefstatvfs(2) system call.

explain_fstatvfs
const char *explain_fstatvfs(int fildes, struct statvfs *data);

Theexplain_fstatvfs function is used to obtain an explanation of an error returned by thefstatvfs(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thefstatvfs(2) system call.

data The original data, exactly as passed to thefstatvfs(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)
{

fprintf(stderr, "%s\n", explain_fstatvfs(fildes, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fstatvfs_or_die(3) function.

explain_errno_fstatvfs
const char *explain_errno_fstatvfs(int errnum, int fildes, struct statvfs *data);

Theexplain_errno_fstatvfs function is used to obtain an explanation of an error returned by thefstatvfs(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefstatvfs(2) system call.

data The original data, exactly as passed to thefstatvfs(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

337

explain_fstatvfs(3) explain_fstatvfs(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fstatvfs(err, fildes,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fstatvfs_or_die(3) function.

explain_message_fstatvfs
void explain_message_fstatvfs(char *message, int message_size, int fildes, struct statvfs *data);

The explain_message_fstatvfsfunction is used to obtain an explanation of an error returned by the
fstatvfs(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefstatvfs(2) system call.

data The original data, exactly as passed to thefstatvfs(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fstatvfs(fildes, data) < 0)
{

char message[3000];
explain_message_fstatvfs(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fstatvfs_or_die(3) function.

explain_message_errno_fstatvfs
void explain_message_errno_fstatvfs(char *message, int message_size, int errnum, int fildes, struct statvfs
*data);

Theexplain_message_errno_fstatvfsfunction is used to obtain an explanation of an error returned by the
fstatvfs(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefstatvfs(2) system call.

data The original data, exactly as passed to thefstatvfs(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:

338

explain_fstatvfs(3) explain_fstatvfs(3)

if (fstatvfs(fildes, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fstatvfs(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fstatvfs_or_die(3) function.

SEE ALSO
fstatvfs(2)

get file system statistics

explain_fstatvfs_or_die(3)
get file system statistics and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

339

explain_fstatvfs_or_die(3) explain_fstatvfs_or_die(3)

NAME
explain_fstatvfs_or_die − get file system statistics and report errors

SYNOPSIS
#include <libexplain/fstatvfs.h>

void explain_fstatvfs_or_die(int fildes, struct statvfs *data);
int explain_fstatvfs_on_error(int fildes, struct statvfs *data);

DESCRIPTION
The explain_fstatvfs_or_diefunction is used to call thefstatvfs(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fstatvfs(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_fstatvfs_on_error function is used to call thefstatvfs(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_fstatvfs(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thefstatvfs(2) system call.

data The data, exactly as to be passed to thefstatvfs(2) system call.

RETURN VALUE
The explain_fstatvfs_or_die function only returns on success, seefstatvfs(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_fstatvfs_on_error function always returns the value return by the wrappedfstatvfs(2) system
call.

EXAMPLE
Theexplain_fstatvfs_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fstatvfs_or_die(fildes, data);

SEE ALSO
fstatvfs(2)

get file system statistics

explain_fstatvfs(3)
explain fstatvfs(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

340

explain_fsync(3) explain_fsync(3)

NAME
explain_fsync − explainfsync(2) errors

SYNOPSIS
#include <libexplain/fsync.h>

const char *explain_fsync(int fildes);
const char *explain_errno_fsync(int errnum, int fildes);
void explain_message_fsync(char *message, int message_size, int fildes);
void explain_message_errno_fsync(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefsync(2) system call.

explain_fsync
const char *explain_fsync(int fildes);

The explain_fsync function is used to obtain an explanation of an error returned by thefsync(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thefsync(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)
{

fprintf(stderr, "%s\n", explain_fsync(fildes));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fsync_or_die(3) function.

explain_errno_fsync
const char *explain_errno_fsync(int errnum, int fildes);

The explain_errno_fsync function is used to obtain an explanation of an error returned by thefsync(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefsync(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)
{

341

explain_fsync(3) explain_fsync(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fsync(err, fildes));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fsync_or_die(3) function.

explain_message_fsync
void explain_message_fsync(char *message, int message_size, int fildes);

The explain_message_fsyncfunction is used to obtain an explanation of an error returned by thefsync(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefsync(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)
{

char message[3000];
explain_message_fsync(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_fsync_or_die(3) function.

explain_message_errno_fsync
void explain_message_errno_fsync(char *message, int message_size, int errnum, int fildes);

The explain_message_errno_fsyncfunction is used to obtain an explanation of an error returned by the
fsync(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefsync(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (fsync(fildes) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_fsync(message, sizeof(message), err,
fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

342

explain_fsync(3) explain_fsync(3)

The above code example is available pre-packaged as theexplain_fsync_or_die(3) function.

SEE ALSO
fsync(2) synchronize a file’s in-core state with storage device

explain_fsync_or_die(3)
synchronize a file’s in-core state with storage device and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

343

explain_fsync_or_die(3) explain_fsync_or_die(3)

NAME
explain_fsync_or_die − synchronize a file with storage device and report errors

SYNOPSIS
#include <libexplain/fsync.h>

void explain_fsync_or_die(int fildes);
int explain_fsync_on_error(int fildes);

DESCRIPTION
The explain_fsync_or_diefunction is used to call thefsync(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_fsync(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_fsync_on_error function is used to call thefsync(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_fsync(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thefsync(2) system call.

RETURN VALUE
Theexplain_fsync_or_diefunction only returns on success, seefsync(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_fsync_on_errorfunction always returns the value return by the wrappedfsync(2) system call.

EXAMPLE
Theexplain_fsync_or_diefunction is intended to be used in a fashion similar to the following example:

explain_fsync_or_die(fildes);

SEE ALSO
fsync(2) synchronize a file’s in-core state with storage device

explain_fsync(3)
explain fsync(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

344

explain_ftell(3) explain_ftell(3)

NAME
explain_ftell − explainftell(3) errors

SYNOPSIS
#include <libexplain/ftell.h>

const char *explain_ftell(FILE *fp);
const char *explain_errno_ftell(int errnum, FILE *fp);
void explain_message_ftell(char *message, int message_size, FILE *fp);
void explain_message_errno_ftell(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theftell(3) system call.

explain_ftell
const char *explain_ftell(FILE *fp);

Theexplain_ftell function is used to obtain an explanation of an error returned by theftell(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to theftell(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_ftell(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ftell_or_die(3) function.

explain_errno_ftell
const char *explain_errno_ftell(int errnum, FILE *fp);

Theexplain_errno_ftell function is used to obtain an explanation of an error returned by theftell(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to theftell(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);

345

explain_ftell(3) explain_ftell(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftell(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ftell_or_die(3) function.

explain_message_ftell
void explain_message_ftell(char *message, int message_size, FILE *fp);

The explain_message_ftellfunction is used to obtain an explanation of an error returned by theftell(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to theftell(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)
{

char message[3000];
explain_message_ftell(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ftell_or_die(3) function.

explain_message_errno_ftell
void explain_message_errno_ftell(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_ftellfunction is used to obtain an explanation of an error returned by the
ftell(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to theftell(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ftell(fp);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_ftell(message, sizeof(message), err,

346

explain_ftell(3) explain_ftell(3)

fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ftell_or_die(3) function.

SEE ALSO
ftell(3) reposition a stream

explain_ftell_or_die(3)
reposition a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

347

explain_ftello(3) explain_ftello(3)

NAME
explain_ftello − explainftello(3) errors

SYNOPSIS
#include <libexplain/ftello.h>

const char *explain_ftello(FILE *fp);
const char *explain_errno_ftello(int errnum, FILE *fp);
void explain_message_ftello(char *message, int message_size, FILE *fp);
void explain_message_errno_ftello(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theftello(3) system call.

explain_ftello
const char *explain_ftello(FILE *fp);

The explain_ftello function is used to obtain an explanation of an error returned by theftello(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to theftello(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = ftello(fp);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_ftello(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_ftello_or_die(3) function.

explain_errno_ftello
const char *explain_errno_ftello(int errnum, FILE *fp);

The explain_errno_ftello function is used to obtain an explanation of an error returned by theftello(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to theftello(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = ftello(fp);

348

explain_ftello(3) explain_ftello(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftello(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_ftello_or_die(3) function.

explain_message_ftello
void explain_message_ftello(char *message, int message_size, FILE *fp);

The explain_message_ftellofunction is used to obtain an explanation of an error returned by theftello(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to theftello(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = ftello(fp);
if (result < 0)
{

char message[3000];
explain_message_ftello(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_ftello_or_die(3) function.

explain_message_errno_ftello
void explain_message_errno_ftello(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_ftellofunction is used to obtain an explanation of an error returned by the
ftello(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to theftello(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = ftello(fp);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_ftello(message, sizeof(message), err,

349

explain_ftello(3) explain_ftello(3)

fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_ftello_or_die(3) function.

SEE ALSO
ftello(3) get stream position

explain_ftello_or_die(3)
get stream position and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

350

explain_ftello_or_die(3) explain_ftello_or_die(3)

NAME
explain_ftello_or_die − get stream position and report errors

SYNOPSIS
#include <libexplain/ftello.h>

off_t explain_ftello_or_die(FILE *fp);
off_t explain_ftello_on_error(FILE *fp);

DESCRIPTION
The explain_ftello_or_die function is used to call theftello(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_ftello(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_ftello_on_error function is used to call theftello(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_ftello(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to theftello(3) system call.

RETURN VALUE
Theexplain_ftello_or_die function only returns on success, seeftello(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_ftello_on_error function always returns the value return by the wrappedftello(3) system call.

EXAMPLE
Theexplain_ftello_or_diefunction is intended to be used in a fashion similar to the following example:

off_t result = explain_ftello_or_die(fp);

SEE ALSO
ftello(3) get stream position

explain_ftello(3)
explain ftello(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

351

explain_ftell_or_die(3) explain_ftell_or_die(3)

NAME
explain_ftell_or_die − get stream position and report errors

SYNOPSIS
#include <libexplain/ftell.h>

long explain_ftell_or_die(FILE *fp);
long explain_ftell_on_error(FILE *fp);

DESCRIPTION
Theexplain_ftell_or_die function is used to call theftell(3) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_ftell(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_ftell_on_error function is used to call theftell(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_ftell(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to theftell(3) system call.

RETURN VALUE
The explain_ftell_or_die function only returns on success, seeftell(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_ftell_on_error function always returns the value return by the wrappedftell(3) system call.

EXAMPLE
Theexplain_ftell_or_die function is intended to be used in a fashion similar to the following example:

long result = explain_ftell_or_die(fp);

SEE ALSO
ftell(3) get stream position

explain_ftell(3)
explain ftell(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

352

explain_ftime(3) explain_ftime(3)

NAME
explain_ftime − explain ftime(3) errors

SYNOPSIS
#include <libexplain/ftime.h>

const char *explain_ftime(struct timeb *tp);
const char *explain_errno_ftime(int errnum, struct timeb *tp);
void explain_message_ftime(char *message, int message_size, struct timeb *tp);
void explain_message_errno_ftime(char *message, int message_size, int errnum, struct timeb *tp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theftime(3) system call.

explain_ftime
const char *explain_ftime(struct timeb *tp);

The explain_ftime function is used to obtain an explanation of an error returned by theftime(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

tp The original tp, exactly as passed to theftime(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{

fprintf(stderr, "%s\n", explain_ftime(tp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ftime_or_die(3) function.

explain_errno_ftime
const char *explain_errno_ftime(int errnum, struct timeb *tp);

The explain_errno_ftime function is used to obtain an explanation of an error returned by theftime(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

tp The original tp, exactly as passed to theftime(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{

353

explain_ftime(3) explain_ftime(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftime(err, tp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ftime_or_die(3) function.

explain_message_ftime
void explain_message_ftime(char *message, int message_size, struct timeb *tp);

The explain_message_ftimefunction is used to obtain an explanation of an error returned by theftime(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

tp The original tp, exactly as passed to theftime(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{

char message[3000];
explain_message_ftime(message, sizeof(message), tp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ftime_or_die(3) function.

explain_message_errno_ftime
void explain_message_errno_ftime(char *message, int message_size, int errnum, struct timeb *tp);

The explain_message_errno_ftimefunction is used to obtain an explanation of an error returned by the
ftime(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

tp The original tp, exactly as passed to theftime(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ftime(tp) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_ftime(message, sizeof(message), err,
tp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

354

explain_ftime(3) explain_ftime(3)

The above code example is available pre-packaged as theexplain_ftime_or_die(3) function.

SEE ALSO
ftime(3) return date and time

explain_ftime_or_die(3)
return date and time and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

355

explain_ftime_or_die(3) explain_ftime_or_die(3)

NAME
explain_ftime_or_die − return date and time and report errors

SYNOPSIS
#include <libexplain/ftime.h>

void explain_ftime_or_die(struct timeb *tp);
int explain_ftime_on_error(struct timeb *tp);

DESCRIPTION
The explain_ftime_or_die function is used to call theftime(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_ftime(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_ftime_on_error function is used to call theftime(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_ftime(3) function, but still returns to the caller.

tp The tp, exactly as to be passed to theftime(3) system call.

RETURN VALUE
Theexplain_ftime_or_die function only returns on success, seeftime(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_ftime_on_error function always returns the value return by the wrappedftime(3) system call.

EXAMPLE
Theexplain_ftime_or_diefunction is intended to be used in a fashion similar to the following example:

explain_ftime_or_die(tp);

SEE ALSO
ftime(3) return date and time

explain_ftime(3)
explain ftime(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

356

explain_ftruncate(3) explain_ftruncate(3)

NAME
explain_ftruncate − explain ftruncate(2) errors

SYNOPSIS
#include <libexplain/ftruncate.h>

const char *explain_ftruncate(int fildes, long long length);
const char *explain_errno_ftruncate(int errnum, int fildes, long long length);
void explain_message_ftruncate(char *message, int message_size, int fildes, long long length);
void explain_message_errno_ftruncate(char *message, int message_size, int errnum, int fildes, long long
length);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theftruncate(2) system call.

explain_ftruncate
const char *explain_ftruncate(int fildes, long long length);

The explain_ftruncate function is used to obtain an explanation of an error returned by theftruncate(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)
{

fprintf(stderr, "%s\n", explain_ftruncate(fildes, length));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to theftruncate(2) system call.

length The original length, exactly as passed to theftruncate(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_ftruncate
const char *explain_errno_ftruncate(int errnum, int fildes, long long length);

The explain_errno_ftruncate function is used to obtain an explanation of an error returned by the
ftruncate(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ftruncate(err, fildes, length));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theftruncate(2) system call.

357

explain_ftruncate(3) explain_ftruncate(3)

length The original length, exactly as passed to theftruncate(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_ftruncate
void explain_message_ftruncate(char *message, int message_size, int fildes, long long length);

Theexplain_message_ftruncatefunction may be used toobtain an explanation of an error returned by the
ftruncate(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)
{

char message[3000];
explain_message_ftruncate(message, sizeof(message), fildes, length);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theftruncate(2) system call.

length The original length, exactly as passed to theftruncate(2) system call.

explain_message_errno_ftruncate
void explain_message_errno_ftruncate(char *message, int message_size, int errnum, int fildes, long long
length);

Theexplain_message_errno_ftruncatefunction may be used to obtain an explanation of an error returned
by theftruncate(2) system call.The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ftruncate(fildes, length) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_ftruncate(message, sizeof(message), err,

fildes, length);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be

358

explain_ftruncate(3) explain_ftruncate(3)

explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theftruncate(2) system call.

length The original length, exactly as passed to theftruncate(2) system call.

SEE ALSO
ftruncate(2)

truncate a file to a specified length

explain_ftruncate_or_die(3)
truncate a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

359

explain_ftruncate_or_die(3) explain_ftruncate_or_die(3)

NAME
explain_ftruncate_or_die − truncate a file and report errors

SYNOPSIS
#include <libexplain/ftruncate.h>

void explain_ftruncate_or_die(int fildes, long long length);

DESCRIPTION
The explain_ftruncate_or_die function is used to call theftruncate(2) system call. On failure an
explanation will be printed tostderr, obtained fromexplain_ftruncate(3), and then the process terminates
by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_ftruncate_or_die(fildes, length);

fildes The fildes, exactly as to be passed to theftruncate(2) system call.

length The length, exactly as to be passed to theftruncate(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
ftruncate(2)

truncate a file to a specified length

explain_ftruncate(3)
explain ftruncate(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

360

explain_futimens(3) explain_futimens(3)

NAME
explain_futimens − explainfutimens(3) errors

SYNOPSIS
#include <libexplain/futimens.h>

const char *explain_futimens(int fildes, const struct time_spec *data);
const char *explain_errno_futimens(int errnum, int fildes, const struct time_spec *data);
void explain_message_futimens(char *message, int message_size, int fildes, const struct time_spec *data);
void explain_message_errno_futimens(char *message, int message_size, int errnum, int fildes, const struct
time_spec *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefutimens(3) system call.

explain_futimens
const char *explain_futimens(int fildes, const struct time_spec *data);

The explain_futimens function is used to obtain an explanation of an error returned by thefutimens(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thefutimens(3) system call.

data The original data, exactly as passed to thefutimens(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimens(fildes, data) < 0)
{

fprintf(stderr, "%s\n", explain_futimens(fildes, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_futimens_or_die(3) function.

explain_errno_futimens
const char *explain_errno_futimens(int errnum, int fildes, const struct time_spec *data);

The explain_errno_futimens function is used to obtain an explanation of an error returned by the
futimens(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefutimens(3) system call.

data The original data, exactly as passed to thefutimens(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

361

explain_futimens(3) explain_futimens(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (futimens(fildes, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_futimens(err, fildes,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_futimens_or_die(3) function.

explain_message_futimens
void explain_message_futimens(char *message, int message_size, int fildes, const struct time_spec *data);

The explain_message_futimensfunction is used to obtain an explanation of an error returned by the
futimens(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefutimens(3) system call.

data The original data, exactly as passed to thefutimens(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimens(fildes, data) < 0)
{

char message[3000];
explain_message_futimens(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_futimens_or_die(3) function.

explain_message_errno_futimens
void explain_message_errno_futimens(char *message, int message_size, int errnum, int fildes, const struct
time_spec *data);

The explain_message_errno_futimensfunction is used to obtain an explanation of an error returned by
the futimens(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefutimens(3) system call.

data The original data, exactly as passed to thefutimens(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:

362

explain_futimens(3) explain_futimens(3)

if (futimens(fildes, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_futimens(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_futimens_or_die(3) function.

SEE ALSO
futimens(3)

change file timestamps with nanosecond precision

explain_futimens_or_die(3)
change file timestamps with nanosecond precision and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

363

explain_futimens_or_die(3) explain_futimens_or_die(3)

NAME
explain_futimens_or_die − change file timestamps and report errors

SYNOPSIS
#include <libexplain/futimens.h>

void explain_futimens_or_die(int fildes, const struct time_spec *data);
int explain_futimens_on_error(int fildes, const struct time_spec *data);

DESCRIPTION
The explain_futimens_or_die function is used to call thefutimens(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_futimens(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_futimens_on_error function is used to call thefutimens(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_futimens(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thefutimens(3) system call.

data The data, exactly as to be passed to thefutimens(3) system call.

RETURN VALUE
The explain_futimens_or_diefunction only returns on success, seefutimens(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_futimens_on_error function always returns the value return by the wrappedfutimens(3)
system call.

EXAMPLE
The explain_futimens_or_die function is intended to be used in a fashion similar to the following
example:

explain_futimens_or_die(fildes, data);

SEE ALSO
futimens(3)

change file timestamps with nanosecond precision

explain_futimens(3)
explain futimens(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

364

explain_futimes(3) explain_futimes(3)

NAME
explain_futimes − explain futimes(3) errors

SYNOPSIS
#include <libexplain/futimes.h>

const char *explain_futimes(int fildes, const struct timeval * tv);
const char *explain_errno_futimes(int errnum, int fildes, const struct timeval * tv);
void explain_message_futimes(char *message, int message_size, int fildes, const struct timeval * tv);
void explain_message_errno_futimes(char *message, int message_size, int errnum, int fildes, const struct
timeval * tv);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefutimes(3) system call.

explain_futimes
const char *explain_futimes(int fildes, const struct timeval * tv);

Theexplain_futimesfunction is used to obtain an explanation of an error returned by thefutimes(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (futimes(fildes, tv) < 0)
{

fprintf(stderr, "%s\n", explain_futimes(fildes, tv));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_futimes_or_die(3) function.

fildes The original fildes, exactly as passed to thefutimes(3) system call.

tv The original tv, exactly as passed to thefutimes(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_futimes
const char *explain_errno_futimes(int errnum, int fildes, const struct timeval * tv);

Theexplain_errno_futimes function is used to obtain an explanation of an error returned by thefutimes(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (futimes(fildes, tv) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_futimes(err, fildes, tv));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_futimes_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

365

explain_futimes(3) explain_futimes(3)

fildes The original fildes, exactly as passed to thefutimes(3) system call.

tv The original tv, exactly as passed to thefutimes(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_futimes
void explain_message_futimes(char *message, int message_size, int fildes, const struct timeval * tv);

The explain_message_futimesfunction may be used toobtain an explanation of an error returned by the
futimes(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (futimes(fildes, tv) < 0)
{

char message[3000];
explain_message_futimes(message, sizeof(message), fildes, tv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_futimes_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefutimes(3) system call.

tv The original tv, exactly as passed to thefutimes(3) system call.

explain_message_errno_futimes
void explain_message_errno_futimes(char *message, int message_size, int errnum, int fildes, const struct
timeval * tv);

The explain_message_errno_futimesfunction may be used to obtain an explanation of an error returned
by thefutimes(3) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (futimes(fildes, tv) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_futimes(message, sizeof(message), err, fildes, tv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_futimes_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

366

explain_futimes(3) explain_futimes(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefutimes(3) system call.

tv The original tv, exactly as passed to thefutimes(3) system call.

SEE ALSO
futimes(3)

change file timestamps

explain_futimes_or_die(3)
change file timestamps and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

367

explain_futimesat(3) explain_futimesat(3)

NAME
explain_futimesat − explainfutimesat(2) errors

SYNOPSIS
#include <libexplain/futimesat.h>

const char *explain_futimesat(int fildes, const char *pathname, const struct timeval * data);
const char *explain_errno_futimesat(int errnum, int fildes, const char *pathname, const struct timeval
*data);
void explain_message_futimesat(char *message, int message_size, int fildes, const char *pathname, const
struct timeval * data);
void explain_message_errno_futimesat(char *message, int message_size, int errnum, int fildes, const char
*pathname, const struct timeval * data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefutimesat(2) system call.

explain_futimesat
const char *explain_futimesat(int fildes, const char *pathname, const struct timeval * data);

The explain_futimesat function is used to obtain an explanation of an error returned by thefutimesat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thefutimesat(2) system call.

pathname
The original pathname, exactly as passed to thefutimesat(2) system call.

data The original data, exactly as passed to thefutimesat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimesat(fildes, pathname, data) < 0)
{

fprintf(stderr, "%s\n", explain_futimesat(fildes, pathname,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_futimesat_or_die(3) function.

explain_errno_futimesat
const char *explain_errno_futimesat(int errnum, int fildes, const char *pathname, const struct timeval
*data);

The explain_errno_futimesat function is used to obtain an explanation of an error returned by the
futimesat(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefutimesat(2) system call.

368

explain_futimesat(3) explain_futimesat(3)

pathname
The original pathname, exactly as passed to thefutimesat(2) system call.

data The original data, exactly as passed to thefutimesat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimesat(fildes, pathname, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_futimesat(err, fildes,
pathname, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_futimesat_or_die(3) function.

explain_message_futimesat
void explain_message_futimesat(char *message, int message_size, int fildes, const char *pathname, const
struct timeval * data);

The explain_message_futimesatfunction is used to obtain an explanation of an error returned by the
futimesat(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thefutimesat(2) system call.

pathname
The original pathname, exactly as passed to thefutimesat(2) system call.

data The original data, exactly as passed to thefutimesat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimesat(fildes, pathname, data) < 0)
{

char message[3000];
explain_message_futimesat(message, sizeof(message), fildes,
pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_futimesat_or_die(3) function.

explain_message_errno_futimesat
void explain_message_errno_futimesat(char *message, int message_size, int errnum, int fildes, const char
*pathname, const struct timeval * data);

The explain_message_errno_futimesatfunction is used to obtain an explanation of an error returned by
the futimesat(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

369

explain_futimesat(3) explain_futimesat(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thefutimesat(2) system call.

pathname
The original pathname, exactly as passed to thefutimesat(2) system call.

data The original data, exactly as passed to thefutimesat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (futimesat(fildes, pathname, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_futimesat(message, sizeof(message), err,
fildes, pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_futimesat_or_die(3) function.

SEE ALSO
futimesat(2)

change timestamps of a file relative to a directory

explain_futimesat_or_die(3)
change timestamps of a file relative to a directory andreport errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

370

explain_futimesat_or_die(3) explain_futimesat_or_die(3)

NAME
explain_futimesat_or_die − change timestamps of a file relative to a directory andreport errors

SYNOPSIS
#include <libexplain/futimesat.h>

void explain_futimesat_or_die(int fildes, const char *pathname, const struct timeval * data);
int explain_futimesat_on_error(int fildes, const char *pathname, const struct timeval * data);

DESCRIPTION
The explain_futimesat_or_die function is used to call thefutimesat(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_futimesat(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_futimesat_on_error function is used to call thefutimesat(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_futimesat(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thefutimesat(2) system call.

pathname
The pathname, exactly as to be passed to thefutimesat(2) system call.

data The data, exactly as to be passed to thefutimesat(2) system call.

RETURN VALUE
Theexplain_futimesat_or_diefunction only returns on success, seefutimesat(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_futimesat_on_error function always returns the value return by the wrappedfutimesat(2)
system call.

EXAMPLE
The explain_futimesat_or_die function is intended to be used in a fashion similar to the following
example:

explain_futimesat_or_die(fildes, pathname, data);

SEE ALSO
futimesat(2)

change timestamps of a file relative to a directory

explain_futimesat(3)
explain futimesat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

371

explain_futimes_or_die(3) explain_futimes_or_die(3)

NAME
explain_futimes_or_die − change file timestamps and report errors

SYNOPSIS
#include <libexplain/futimes.h>

void explain_futimes_or_die(int fildes, const struct timeval * tv);

DESCRIPTION
Theexplain_futimes_or_diefunction is used to call thefutimes(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_futimes(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_futimes_or_die(fildes, tv);

fildes The fildes, exactly as to be passed to thefutimes(3) system call.

tv The tv, exactly as to be passed to thefutimes(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
futimes(3)

change file timestamps

explain_futimes(3)
explain futimes(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

372

explain_fwrite(3) explain_fwrite(3)

NAME
explain_fwrite − explain fwrite(3) errors

SYNOPSIS
#include <libexplain/fwrite.h>

const char *explain_fwrite(const void *ptr, size_t size, size_t nmemb, FILE *fp);
const char *explain_errno_fwrite(int errnum, const void *ptr, size_t size, size_t nmemb, FILE *fp);
void explain_message_fwrite(char *message, int message_size, const void *ptr, size_t size, size_t nmemb,
FILE *fp);
void explain_message_errno_fwrite(char *message, int message_size, int errnum, const void *ptr, size_t
size, size_t nmemb, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thefwrite(3) system call.

explain_fwrite
const char *explain_fwrite(const void *ptr, size_t size, size_t nmemb, FILE *fp);

The explain_fwrite function is used to obtain an explanation of an error returned by thefwrite(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fwrite(ptr, size, nmemb, fp) < 0)
{

fprintf(stderr, "%s\n", explain_fwrite(ptr, size, nmemb, fp));
exit(EXIT_FAILURE);

}

ptr The original ptr, exactly as passed to thefwrite(3) system call.

size The original size, exactly as passed to thefwrite(3) system call.

nmemb The original nmemb, exactly as passed to thefwrite(3) system call.

fp The original fp, exactly as passed to thefwrite(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_fwrite
const char *explain_errno_fwrite(int errnum, const void *ptr, size_t size, size_t nmemb, FILE *fp);

The explain_errno_fwrite function is used to obtain an explanation of an error returned by thefwrite(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fwrite(ptr, size, nmemb, fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_fwrite(err,

ptr, size, nmemb, fp));
exit(EXIT_FAILURE);

}

373

explain_fwrite(3) explain_fwrite(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ptr The original ptr, exactly as passed to thefwrite(3) system call.

size The original size, exactly as passed to thefwrite(3) system call.

nmemb The original nmemb, exactly as passed to thefwrite(3) system call.

fp The original fp, exactly as passed to thefwrite(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_fwrite
void explain_message_fwrite(char *message, int message_size, const void *ptr, size_t size, size_t nmemb,
FILE *fp);

The explain_message_fwritefunction may be used to obtain an explanation of an error returned by the
fwrite(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (fwrite(ptr, size, nmemb, fp) < 0)
{

char message[3000];
explain_message_fwrite(message, sizeof(message), ptr, size, nmemb, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

ptr The original ptr, exactly as passed to thefwrite(3) system call.

size The original size, exactly as passed to thefwrite(3) system call.

nmemb The original nmemb, exactly as passed to thefwrite(3) system call.

fp The original fp, exactly as passed to thefwrite(3) system call.

explain_message_errno_fwrite
void explain_message_errno_fwrite(char *message, int message_size, int errnum, const void *ptr, size_t
size, size_t nmemb, FILE *fp);

Theexplain_message_errno_fwritefunction may be used to obtain an explanation of an error returned by
the fwrite(3) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (fwrite(ptr, size, nmemb, fp) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_fwrite(message, sizeof(message), err,

374

explain_fwrite(3) explain_fwrite(3)

ptr, size, nmemb, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ptr The original ptr, exactly as passed to thefwrite(3) system call.

size The original size, exactly as passed to thefwrite(3) system call.

nmemb The original nmemb, exactly as passed to thefwrite(3) system call.

fp The original fp, exactly as passed to thefwrite(3) system call.

SEE ALSO
fwrite(3) binary stream output

explain_fwrite_or_die(3)
binary stream output and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

375

explain_fwrite_or_die(3) explain_fwrite_or_die(3)

NAME
explain_fwrite_or_die − binary stream output and report errors

SYNOPSIS
#include <libexplain/fwrite.h>

size_t explain_fwrite_or_die(const void *ptr, size_t size, size_t nmemb, FILE *fp);

DESCRIPTION
Theexplain_fwrite_or_die function is used to call thefwrite(3) system call.On failure an explanation will
be printed tostderr, obtained from explain_fwrite(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
size_t result = explain_fwrite_or_die(ptr, size, nmemb, fp);

ptr The ptr, exactly as to be passed to thefwrite(3) system call.

size The size, exactly as to be passed to thefwrite(3) system call.

nmemb The nmemb, exactly as to be passed to thefwrite(3) system call.

fp The fp, exactly as to be passed to thefwrite(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
fwrite(3) binary stream output

explain_fwrite(3)
explain fwrite(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

376

explain_getaddrinfo(3) explain_getaddrinfo(3)

NAME
explain_getaddrinfo − explain getaddrinfo(3) errors

SYNOPSIS
#include <libexplain/getaddrinfo.h>

const char *explain_errcode_getaddrinfo(int errnum, const char *node, const char *service, const struct
addrinfo *hints, struct addrinfo **res);
void explain_message_errcode_getaddrinfo(char *message, int message_size, int errnum, const char *node,
const char *service, const struct addrinfo *hints, struct addrinfo **res);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetaddrinfo(3) system call.

explain_errcode_getaddrinfo
const char *explain_errcode_getaddrinfo(int errnum, const char *node, const char *service, const struct
addrinfo *hints, struct addrinfo **res);

The explain_errcode_getaddrinfo function is used to obtain an explanation of an error returned by the
getaddrinfo(3) system call. The least the message will contain is the value of
gai_strerror(errcode) , but usually it will do much better, and indicate the underlying cause in
more detail.

This function is intended to be used in a fashion similar to the following example:
int errcode = getaddrinfo(node, service, hints, res);
if (errncode == GAI_SYSTEM)

errcode = errno;
if (errcode)
{

fprintf(stderr, "%s\n", explain_errcode_getaddrinfo(errcode,
node, service, hints, res));

exit(EXIT_FAILURE);
}

The above code example is available as theexplain_getaddrinfo_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

node The original node, exactly as passed to thegetaddrinfo(3) system call.

service The original service, exactly as passed to thegetaddrinfo(3) system call.

hints The original hints, exactly as passed to thegetaddrinfo(3) system call.

res The original res, exactly as passed to thegetaddrinfo(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_errno_getaddrinfo
void explain_message_errno_getaddrinfo(char *message, int message_size, int errnum, const char *node,
const char *service, const struct addrinfo *hints, struct addrinfo **res);

The explain_message_errno_getaddrinfofunction may be used to obtain an explanation of an error
returned by thegetaddrinfo(3) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

377

explain_getaddrinfo(3) explain_getaddrinfo(3)

This function is intended to be used in a fashion similar to the following example:
int errcode = getaddrinfo(node, service, hints, res);
if (errnode == EAI_SYSTEM)

errcode = errno;
if (errcode)
{

char message[3000];
explain_message_errcode_getaddrinfo(message, sizeof(message),

errcode, node, service, hints, res);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getaddrinfo_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

node The original node, exactly as passed to thegetaddrinfo(3) system call.

service The original service, exactly as passed to thegetaddrinfo(3) system call.

hints The original hints, exactly as passed to thegetaddrinfo(3) system call.

res The original res, exactly as passed to thegetaddrinfo(3) system call.

SEE ALSO
getaddrinfo(3)

network address and

explain_getaddrinfo_or_die(3)
network address and and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

378

explain_getaddrinfo_or_die(3) explain_getaddrinfo_or_die(3)

NAME
explain_getaddrinfo_or_die − network address translation and report errors

SYNOPSIS
#include <libexplain/getaddrinfo.h>

void explain_getaddrinfo_or_die(const char *node, const char *service, const struct addrinfo *hints, struct
addrinfo **res);

DESCRIPTION
The explain_getaddrinfo_or_die function is used to call thegetaddrinfo(3) system call. On failure, an
explanation will be printed tostderr, obtained fromexplain_getaddrinfo(3), and then the process terminates
by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_getaddrinfo_or_die(node, service, hints, res);

node The node, exactly as to be passed to thegetaddrinfo(3) system call.

service The service, exactly as to be passed to thegetaddrinfo(3) system call.

hints The hints, exactly as to be passed to thegetaddrinfo(3) system call.

res The res, exactly as to be passed to thegetaddrinfo(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getaddrinfo(3)

network address and service translation

explain_getaddrinfo(3)
explaingetaddrinfo(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

379

explain_getc(3) explain_getc(3)

NAME
explain_getc − explain getc(3) errors

SYNOPSIS
#include <libexplain/getc.h>

const char *explain_getc(FILE *fp);
const char *explain_errno_getc(int errnum, FILE *fp);
void explain_message_getc(char *message, int message_size, FILE *fp);
void explain_message_errno_getc(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetc(3) system call.

explain_getc
const char *explain_getc(FILE *fp);

Theexplain_getcfunction is used to obtain an explanation of an error returned by thegetc(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int c = getc(fp);
if (c == EOF && ferror(fp))
{

fprintf(stderr, "%s\n", explain_getc(fp));
exit(EXIT_FAILURE);

}

fp The original fp, exactly as passed to thegetc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_getc
const char *explain_errno_getc(int errnum, FILE *fp);

The explain_errno_getc function is used to obtain an explanation of an error returned by thegetc(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int c = getc(fp);
if (c == EOF && ferror(fp))
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getc(err, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thegetc(3) system call.

380

explain_getc(3) explain_getc(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_getc
void explain_message_getc(char *message, int message_size, FILE *fp);

The explain_message_getcfunction may be used to obtain an explanation of an error returned by the
getc(3) system call.The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int c = getc(fp);
if (c == EOF && ferror(fp))
{

char message[3000];
explain_message_getc(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thegetc(3) system call.

explain_message_errno_getc
void explain_message_errno_getc(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_getcfunction may be used to obtain an explanation of an error returned by
the getc(3) system call. The least the message will contain is the value of strerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int c = getc(fp);
if (c == EOF && ferror(fp))
{

int err = errno;
char message[3000];
explain_message_errno_getc(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

381

explain_getc(3) explain_getc(3)

fp The original fp, exactly as passed to thegetc(3) system call.

SEE ALSO
getc(3) input of characters

explain_getc_or_die(3)
input of characters and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

382

explain_getchar(3) explain_getchar(3)

NAME
explain_getchar − explain getchar(3) errors

SYNOPSIS
#include <libexplain/getchar.h>

const char *explain_getchar(void);
const char *explain_errno_getchar(int errnum, void);
void explain_message_getchar(char *message, int message_size);
void explain_message_errno_getchar(char *message, int message_size, int errnum);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetchar(3) system call.

explain_getchar
const char *explain_getchar(void);

The explain_getchar function is used to obtain an explanation of an error returned by thegetchar(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int c = getchar();
if (c == EOF && ferror(stdin))
{

fprintf(stderr, "%s\n", explain_getchar());
exit(EXIT_FAILURE);

}

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_getchar
const char *explain_errno_getchar(int errnum);

Theexplain_errno_getcharfunction is used to obtain an explanation of an error returned by thegetchar(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int c = getchar();
if (c == EOF && ferror(stdin))
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getchar(err,));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

383

explain_getchar(3) explain_getchar(3)

functions in this library.

explain_message_getchar
void explain_message_getchar(char *message, int message_size);

Theexplain_message_getcharfunction may be used to obtain an explanation of an error returned by the
getchar(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int c = getchar();
if (c == EOF && ferror(stdin))
{

char message[3000];
explain_message_getchar(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

explain_message_errno_getchar
void explain_message_errno_getchar(char *message, int message_size, int errnum);

The explain_message_errno_getcharfunction may be used to obtain an explanation of an error returned
by thegetchar(3) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int c = getchar();
if (c == EOF && ferror(stdin))
{

int err = errno;
char message[3000];
explain_message_errno_getchar(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

SEE ALSO
getchar(3)

input of characters

explain_getchar_or_die(3)
input of characters and report errors

384

explain_getchar(3) explain_getchar(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

385

explain_getchar_or_die(3) explain_getchar_or_die(3)

NAME
explain_getchar_or_die − input of characters and report errors

SYNOPSIS
#include <libexplain/getchar.h>

void explain_getchar_or_die(void);

DESCRIPTION
Theexplain_getchar_or_diefunction is used to call thegetchar(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_getchar(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int c = explain_getchar_or_die();

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getchar(3)

input of characters

explain_getchar(3)
explaingetchar(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

386

explain_getc_or_die(3) explain_getc_or_die(3)

NAME
explain_getc_or_die − input of characters and report errors

SYNOPSIS
#include <libexplain/getc.h>

int explain_getc_or_die(FILE *fp);

DESCRIPTION
Theexplain_getc_or_diefunction is used to call thegetc(3) system call. On failure an explanation will be
printed to stderr, obtained from explain_getc(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int c = explain_getc_or_die(fp);

fp The fp, exactly as to be passed to thegetc(3) system call.

Returns: This function only returns on success, and returns the next character or EOF at end of input.On
failure, prints an explanation and exits.

SEE ALSO
getc(3) input of characters

explain_getc(3)
explaingetc(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

387

explain_getcwd(3) explain_getcwd(3)

NAME
explain_getcwd − explain getcwd(2) errors

SYNOPSIS
#include <libexplain/getcwd.h>

const char *explain_getcwd(char *buf, size_t size);
const char *explain_errno_getcwd(int errnum, char *buf, size_t size);
void explain_message_getcwd(char *message, int message_size, char *buf, size_t size);
void explain_message_errno_getcwd(char *message, int message_size, int errnum, char *buf, size_t size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetcwd(2) system call.

explain_getcwd
const char *explain_getcwd(char *buf, size_t size);

Theexplain_getcwdfunction is used to obtain an explanation of an error returned by thegetcwd(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getcwd(buf, size) < 0)
{

fprintf(stderr, "%s\n", explain_getcwd(buf, size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getcwd_or_die(3) function.

buf The original buf, exactly as passed to thegetcwd(2) system call.

size The original size, exactly as passed to thegetcwd(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_getcwd
const char *explain_errno_getcwd(int errnum, char *buf, size_t size);

Theexplain_errno_getcwdfunction is used to obtain an explanation of an error returned by thegetcwd(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getcwd(buf, size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getcwd(err, buf, size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getcwd_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

388

explain_getcwd(3) explain_getcwd(3)

buf The original buf, exactly as passed to thegetcwd(2) system call.

size The original size, exactly as passed to thegetcwd(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_getcwd
void explain_message_getcwd(char *message, int message_size, char *buf, size_t size);

The explain_message_getcwdfunction may be used to obtain an explanation of an error returned by the
getcwd(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getcwd(buf, size) < 0)
{

char message[3000];
explain_message_getcwd(message, sizeof(message), buf, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getcwd_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

buf The original buf, exactly as passed to thegetcwd(2) system call.

size The original size, exactly as passed to thegetcwd(2) system call.

explain_message_errno_getcwd
void explain_message_errno_getcwd(char *message, int message_size, int errnum, char *buf, size_t size);

The explain_message_errno_getcwdfunction may be used to obtain an explanation of an error returned
by thegetcwd(2) system call.The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getcwd(buf, size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_getcwd(message, sizeof(message), err, buf, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getcwd_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

389

explain_getcwd(3) explain_getcwd(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

buf The original buf, exactly as passed to thegetcwd(2) system call.

size The original size, exactly as passed to thegetcwd(2) system call.

SEE ALSO
getcwd(2)

Get current working directory

explain_getcwd_or_die(3)
Get current working directory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

390

explain_getcwd_or_die(3) explain_getcwd_or_die(3)

NAME
explain_getcwd_or_die − get current working directory and report errors

SYNOPSIS
#include <libexplain/getcwd.h>

void explain_getcwd_or_die(char *buf, size_t size);

DESCRIPTION
The explain_getcwd_or_diefunction is used to call thegetcwd(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_getcwd(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_getcwd_or_die(buf, size);

buf The buf, exactly as to be passed to thegetcwd(2) system call.

size The size, exactly as to be passed to thegetcwd(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getcwd(2)

Get current working directory

explain_getcwd(3)
explaingetcwd(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

391

explain_getdomainname(3) explain_getdomainname(3)

NAME
explain_getdomainname − explain getdomainname(2) errors

SYNOPSIS
#include <libexplain/getdomainname.h>

const char *explain_getdomainname(char *data, size_t data_size);
const char *explain_errno_getdomainname(int errnum, char *data, size_t data_size);
void explain_message_getdomainname(char *message, int message_size, char *data, size_t data_size);
void explain_message_errno_getdomainname(char *message, int message_size, int errnum, char *data,
size_t data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetdomainname(2) system
call.

explain_getdomainname
const char *explain_getdomainname(char *data, size_t data_size);

The explain_getdomainnamefunction is used to obtain an explanation of an error returned by the
getdomainname(2) system call. The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thegetdomainname(2) system call.

data_size
The original data_size, exactly as passed to thegetdomainname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getdomainname(data, data_size) < 0)
{

fprintf(stderr, "%s\n", explain_getdomainname(data,
data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getdomainname_or_die(3) function.

explain_errno_getdomainname
const char *explain_errno_getdomainname(int errnum, char *data, size_t data_size);

The explain_errno_getdomainnamefunction is used to obtain an explanation of an error returned by the
getdomainname(2) system call. The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thegetdomainname(2) system call.

data_size
The original data_size, exactly as passed to thegetdomainname(2) system call.

392

explain_getdomainname(3) explain_getdomainname(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getdomainname(data, data_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getdomainname(err, data,
data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getdomainname_or_die(3) function.

explain_message_getdomainname
void explain_message_getdomainname(char *message, int message_size, char *data, size_t data_size);

The explain_message_getdomainnamefunction is used to obtain an explanation of an error returned by
the getdomainname(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thegetdomainname(2) system call.

data_size
The original data_size, exactly as passed to thegetdomainname(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getdomainname(data, data_size) < 0)
{

char message[3000];
explain_message_getdomainname(message, sizeof(message), data,
data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getdomainname_or_die(3) function.

explain_message_errno_getdomainname
void explain_message_errno_getdomainname(char *message, int message_size, int errnum, char *data,
size_t data_size);

The explain_message_errno_getdomainnamefunction is used to obtain an explanation of an error
returned by thegetdomainname(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

393

explain_getdomainname(3) explain_getdomainname(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thegetdomainname(2) system call.

data_size
The original data_size, exactly as passed to thegetdomainname(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getdomainname(data, data_size) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getdomainname(message, sizeof(message),
err, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getdomainname_or_die(3) function.

SEE ALSO
getdomainname(2)

get domain name

explain_getdomainname_or_die(3)
get domain name and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

394

explain_getdomainname_or_die(3) explain_getdomainname_or_die(3)

NAME
explain_getdomainname_or_die − get domain name and report errors

SYNOPSIS
#include <libexplain/getdomainname.h>

void explain_getdomainname_or_die(char *data, size_t data_size);
int explain_getdomainname_on_error(char *data, size_t data_size);

DESCRIPTION
The explain_getdomainname_or_diefunction is used to call thegetdomainname(2) system call. On
failure an explanation will be printed tostderr, obtained from theexplain_getdomainname(3) function, and
then the process terminates by callingexit(EXIT_FAILURE) .

The explain_getdomainname_on_errorfunction is used to call thegetdomainname(2) system call. On
failure an explanation will be printed tostderr, obtained from theexplain_getdomainname(3) function, but
still returns to the caller.

data The data, exactly as to be passed to thegetdomainname(2) system call.

data_size
The data_size, exactly as to be passed to thegetdomainname(2) system call.

RETURN VALUE
The explain_getdomainname_or_diefunction only returns on success, seegetdomainname(2) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_getdomainname_on_error function always returns the value return by the wrapped
getdomainname(2) system call.

EXAMPLE
Theexplain_getdomainname_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_getdomainname_or_die(data, data_size);

SEE ALSO
getdomainname(2)

get domain name

explain_getdomainname(3)
explaingetdomainname(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

395

explain_getgrent(3) explain_getgrent(3)

NAME
explain_getgrent − explaingetgrent(3) errors

SYNOPSIS
#include <libexplain/getgrent.h>

const char *explain_getgrent(void);
const char *explain_errno_getgrent(int errnum, void);
void explain_message_getgrent(char *message, int message_size, void);
void explain_message_errno_getgrent(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetgrent(3) system call.

explain_getgrent
const char *explain_getgrent(void);

The explain_getgrent function is used to obtain an explanation of an error returned by thegetgrent(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct group *result = getgrent();
if (!result && errno != 0)
{

fprintf(stderr, "%s\n", explain_getgrent());
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getgrent_or_die(3) function.

explain_errno_getgrent
const char *explain_errno_getgrent(int errnum, void);

The explain_errno_getgrent function is used to obtain an explanation of an error returned by the
getgrent(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct group *result = getgrent();
if (!result && errno != 0)

396

explain_getgrent(3) explain_getgrent(3)

{
int err = errno;

fprintf(stderr, "%s\n", explain_errno_getgrent(err,));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getgrent_or_die(3) function.

explain_message_getgrent
void explain_message_getgrent(char *message, int message_size, void);

The explain_message_getgrentfunction is used to obtain an explanation of an error returned by the
getgrent(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct group *result = getgrent();
if (!result && errno != 0)
{

char message[3000];
explain_message_getgrent(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getgrent_or_die(3) function.

explain_message_errno_getgrent
void explain_message_errno_getgrent(char *message, int message_size, int errnum, void);

Theexplain_message_errno_getgrentfunction is used to obtain an explanation of an error returned by the
getgrent(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct group *result = getgrent();
if (!result && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_getgrent(message, sizeof(message), err,
);
fprintf(stderr, "%s\n", message);

397

explain_getgrent(3) explain_getgrent(3)

exit(EXIT_FAILURE);
}

The above code example is available pre−packaged as theexplain_getgrent_or_die(3) function.

SEE ALSO
getgrent(3)

get group file entry

explain_getgrent_or_die(3)
get group file entry and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

398

explain_getgrent_or_die(3) explain_getgrent_or_die(3)

NAME
explain_getgrent_or_die − get group file entry and report errors

SYNOPSIS
#include <libexplain/getgrent.h>

struct group *explain_getgrent_or_die(void);
struct group *explain_getgrent_on_error(void);

DESCRIPTION
Theexplain_getgrent_or_diefunction is used to call thegetgrent(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_getgrent(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_getgrent_on_error function is used to call thegetgrent(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getgrent(3) function, but still returns to the
caller.

RETURN VALUE
The explain_getgrent_or_diefunction only returns on success, seegetgrent(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_getgrent_on_error function always returns the value return by the wrappedgetgrent(3)
system call.

EXAMPLE
Theexplain_getgrent_or_diefunction is intended to be used in a fashion similar to the following example:

struct group *result = explain_getgrent_or_die();

SEE ALSO
getgrent(3)

get group file entry

explain_getgrent(3)
explaingetgrent(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

399

explain_getgrouplist(3) explain_getgrouplist(3)

NAME
explain_getgrouplist − explaingetgrouplist(3) errors

SYNOPSIS
#include <libexplain/getgrouplist.h>

const char *explain_getgrouplist(const char *user, gid_t group, gid_t *groups, int *ngroups);
const char *explain_errno_getgrouplist(int errnum, const char *user, gid_t group, gid_t *groups, int
*ngroups);
void explain_message_getgrouplist(char *message, int message_size, const char *user, gid_t group, gid_t
*groups, int *ngroups);
void explain_message_errno_getgrouplist(char *message, int message_size, int errnum, const char *user,
gid_t group, gid_t *groups, int *ngroups);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetgrouplist(3) system call.

explain_getgrouplist
const char *explain_getgrouplist(const char *user, gid_t group, gid_t *groups, int *ngroups);

The explain_getgrouplist function is used to obtain an explanation of an error returned by the
getgrouplist(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

user The original user, exactly as passed to thegetgrouplist(3) system call.

group The original group, exactly as passed to thegetgrouplist(3) system call.

groups The original groups, exactly as passed to thegetgrouplist(3) system call.

ngroups The original ngroups, exactly as passed to thegetgrouplist(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (getgrouplist(user, group, groups, ngroups) < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_getgrouplist(user, group,
groups, ngroups));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getgrouplist_or_die(3) function.

explain_errno_getgrouplist
const char *explain_errno_getgrouplist(int errnum, const char *user, gid_t group, gid_t *groups, int
*ngroups);

The explain_errno_getgrouplist function is used to obtain an explanation of an error returned by the
getgrouplist(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

400

explain_getgrouplist(3) explain_getgrouplist(3)

user The original user, exactly as passed to thegetgrouplist(3) system call.

group The original group, exactly as passed to thegetgrouplist(3) system call.

groups The original groups, exactly as passed to thegetgrouplist(3) system call.

ngroups The original ngroups, exactly as passed to thegetgrouplist(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (getgrouplist(user, group, groups, ngroups) < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getgrouplist(err, user,
group, groups, ngroups));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getgrouplist_or_die(3) function.

explain_message_getgrouplist
void explain_message_getgrouplist(char *message, int message_size, const char *user, gid_t group, gid_t
*groups, int *ngroups);

The explain_message_getgrouplistfunction is used to obtain an explanation of an error returned by the
getgrouplist(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

user The original user, exactly as passed to thegetgrouplist(3) system call.

group The original group, exactly as passed to thegetgrouplist(3) system call.

groups The original groups, exactly as passed to thegetgrouplist(3) system call.

ngroups The original ngroups, exactly as passed to thegetgrouplist(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (getgrouplist(user, group, groups, ngroups) < 0 && errno != 0)
{

char message[3000];
explain_message_getgrouplist(message, sizeof(message), user,
group, groups, ngroups);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getgrouplist_or_die(3) function.

401

explain_getgrouplist(3) explain_getgrouplist(3)

explain_message_errno_getgrouplist
void explain_message_errno_getgrouplist(char *message, int message_size, int errnum, const char *user,
gid_t group, gid_t *groups, int *ngroups);

Theexplain_message_errno_getgrouplistfunction is used to obtain an explanation of an error returned by
the getgrouplist(3) system call. The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

user The original user, exactly as passed to thegetgrouplist(3) system call.

group The original group, exactly as passed to thegetgrouplist(3) system call.

groups The original groups, exactly as passed to thegetgrouplist(3) system call.

ngroups The original ngroups, exactly as passed to thegetgrouplist(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (getgrouplist(user, group, groups, ngroups) < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_getgrouplist(message, sizeof(message),
err, user, group, groups, ngroups);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getgrouplist_or_die(3) function.

SEE ALSO
getgrouplist(3)

get list of groups to which a user belongs

explain_getgrouplist_or_die(3)
get list of groups to which a user belongs and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

402

explain_getgrouplist_or_die(3) explain_getgrouplist_or_die(3)

NAME
explain_getgrouplist_or_die − get list of groups and report errors

SYNOPSIS
#include <libexplain/getgrouplist.h>

void explain_getgrouplist_or_die(const char *user, gid_t group, gid_t *groups, int *ngroups);
int explain_getgrouplist_on_error(const char *user, gid_t group, gid_t *groups, int *ngroups);

DESCRIPTION
The explain_getgrouplist_or_die function is used to call thegetgrouplist(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getgrouplist(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_getgrouplist_on_error function is used to call thegetgrouplist(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getgrouplist(3) function, but still returns to
the caller.

user The user, exactly as to be passed to thegetgrouplist(3) system call.

group The group, exactly as to be passed to thegetgrouplist(3) system call.

groups The groups, exactly as to be passed to thegetgrouplist(3) system call.

ngroups The ngroups, exactly as to be passed to thegetgrouplist(3) system call.

RETURN VALUE
The explain_getgrouplist_or_die function only returns on success, seegetgrouplist(3) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_getgrouplist_on_error function always returns the value return by the wrapped
getgrouplist(3) system call.

EXAMPLE
The explain_getgrouplist_or_die function is intended to be used in a fashion similar to the following
example:

explain_getgrouplist_or_die(user, group, groups, ngroups);

SEE ALSO
getgrouplist(3)

get list of groups to which a user belongs

explain_getgrouplist(3)
explaingetgrouplist(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

403

explain_getgroups(3) explain_getgroups(3)

NAME
explain_getgroups − explain getgroups(2) errors

SYNOPSIS
#include <libexplain/getgroups.h>

const char *explain_getgroups(int data_size, gid_t *data);
const char *explain_errno_getgroups(int errnum, int data_size, gid_t *data);
void explain_message_getgroups(char *message, int message_size, int data_size, gid_t *data);
void explain_message_errno_getgroups(char *message, int message_size, int errnum, int data_size, gid_t
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetgroups(2) system call.

explain_getgroups
const char *explain_getgroups(int data_size, gid_t *data);

The explain_getgroupsfunction is used to obtain an explanation of an error returned by thegetgroups(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data_size
The original data_size, exactly as passed to thegetgroups(2) system call.

data The original data, exactly as passed to thegetgroups(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getgroups(data_size, data) < 0)
{

fprintf(stderr, "%s\n", explain_getgroups(data_size, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getgroups_or_die(3) function.

explain_errno_getgroups
const char *explain_errno_getgroups(int errnum, int data_size, gid_t *data);

The explain_errno_getgroups function is used to obtain an explanation of an error returned by the
getgroups(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data_size
The original data_size, exactly as passed to thegetgroups(2) system call.

data The original data, exactly as passed to thegetgroups(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

404

explain_getgroups(3) explain_getgroups(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getgroups(data_size, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getgroups(err,
data_size, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getgroups_or_die(3) function.

explain_message_getgroups
void explain_message_getgroups(char *message, int message_size, int data_size, gid_t *data);

The explain_message_getgroupsfunction is used to obtain an explanation of an error returned by the
getgroups(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data_size
The original data_size, exactly as passed to thegetgroups(2) system call.

data The original data, exactly as passed to thegetgroups(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getgroups(data_size, data) < 0)
{

char message[3000];
explain_message_getgroups(message, sizeof(message), data_size,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getgroups_or_die(3) function.

explain_message_errno_getgroups
void explain_message_errno_getgroups(char *message, int message_size, int errnum, int data_size, gid_t
*data);

The explain_message_errno_getgroupsfunction is used to obtain an explanation of an error returned by
thegetgroups(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

405

explain_getgroups(3) explain_getgroups(3)

data_size
The original data_size, exactly as passed to thegetgroups(2) system call.

data The original data, exactly as passed to thegetgroups(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getgroups(data_size, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getgroups(message, sizeof(message), err,
data_size, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getgroups_or_die(3) function.

SEE ALSO
getgroups(2)

get/set list of supplementary group IDs

explain_getgroups_or_die(3)
get/set list of supplementary group IDs and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

406

explain_getgroups_or_die(3) explain_getgroups_or_die(3)

NAME
explain_getgroups_or_die − get supplementary group IDs and report errors

SYNOPSIS
#include <libexplain/getgroups.h>

void explain_getgroups_or_die(int data_size, gid_t *data);
int explain_getgroups_on_error(int data_size, gid_t *data);

DESCRIPTION
The explain_getgroups_or_die function is used to call thegetgroups(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getgroups(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_getgroups_on_error function is used to call thegetgroups(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getgroups(3) function, but still returns to
the caller.

data_size
The data_size, exactly as to be passed to thegetgroups(2) system call.

data The data, exactly as to be passed to thegetgroups(2) system call.

RETURN VALUE
The explain_getgroups_or_diefunction only returns on success, seegetgroups(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_getgroups_on_errorfunction always returns the value return by the wrappedgetgroups(2)
system call.

EXAMPLE
The explain_getgroups_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_getgroups_or_die(data_size, data);

SEE ALSO
getgroups(2)

get/set list of supplementary group IDs

explain_getgroups(3)
explaingetgroups(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

407

explain_gethostbyname(3) explain_gethostbyname(3)

NAME
explain_gethostbyname − explaingethostbyname(3) errors

SYNOPSIS
#include <libexplain/gethostbyname.h>

const char *explain_gethostbyname(const char *name);
const char *explain_errno_gethostbyname(int errnum, const char *name);
void explain_message_gethostbyname(char *message, int message_size, const char *name);
void explain_message_errno_gethostbyname(char *message, int message_size, int errnum, const char
*name);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegethostbyname(3) system
call.

explain_gethostbyname
const char *explain_gethostbyname(const char *name);

The explain_gethostbynamefunction is used to obtain an explanation of an error returned by the
gethostbyname(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

name The original name, exactly as passed to thegethostbyname(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
struct hostent *result = gethostbyname(name);
if (!result)
{

fprintf(stderr, "%s\n", explain_gethostbyname(name));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_gethostbyname_or_die(3) function.

explain_errno_gethostbyname
const char *explain_errno_gethostbyname(int errnum, const char *name);

The explain_errno_gethostbynamefunction is used to obtain an explanation of an error returned by the
gethostbyname(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

name The original name, exactly as passed to thegethostbyname(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

408

explain_gethostbyname(3) explain_gethostbyname(3)

Example: This function is intended to be used in a fashion similar to the following example:
struct hostent *result = gethostbyname(name);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_gethostbyname(err,
name));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_gethostbyname_or_die(3) function.

explain_message_gethostbyname
void explain_message_gethostbyname(char *message, int message_size, const char *name);

Theexplain_message_gethostbynamefunction is used to obtain an explanation of an error returned by the
gethostbyname(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

name The original name, exactly as passed to thegethostbyname(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
struct hostent *result = gethostbyname(name);
if (!result)
{

char message[3000];
explain_message_gethostbyname(message, sizeof(message), name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_gethostbyname_or_die(3) function.

explain_message_errno_gethostbyname
void explain_message_errno_gethostbyname(char *message, int message_size, int errnum, const char
*name);

The explain_message_errno_gethostbynamefunction is used to obtain an explanation of an error
returned by thegethostbyname(3) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

name The original name, exactly as passed to thegethostbyname(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
struct hostent *result = gethostbyname(name);
if (!result)

409

explain_gethostbyname(3) explain_gethostbyname(3)

{
int err = errno;
char message[3000];

explain_message_errno_gethostbyname(message, sizeof(message),
err, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_gethostbyname_or_die(3) function.

SEE ALSO
gethostbyname(3)

get host address given host name

explain_gethostbyname_or_die(3)
get host address given host name and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

410

explain_gethostbyname_or_die(3) explain_gethostbyname_or_die(3)

NAME
explain_gethostbyname_or_die − get host address by host name and report errors

SYNOPSIS
#include <libexplain/gethostbyname.h>

struct hostent *explain_gethostbyname_or_die(const char *name);
struct hostent *explain_gethostbyname_on_error(const char *name);

DESCRIPTION
Theexplain_gethostbyname_or_diefunction is used to call thegethostbyname(3) system call. On failure
an explanation will be printed tostderr, obtained from theexplain_gethostbyname(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_gethostbyname_on_errorfunction is used to call thegethostbyname(3) system call. On
failure an explanation will be printed tostderr, obtained from theexplain_gethostbyname(3) function, but
still returns to the caller.

name The name, exactly as to be passed to thegethostbyname(3) system call.

RETURN VALUE
The explain_gethostbyname_or_diefunction only returns on success, seegethostbyname(3) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_gethostbyname_on_error function always returns the value return by the wrapped
gethostbyname(3) system call.

EXAMPLE
The explain_gethostbyname_or_diefunction is intended to be used in a fashion similar to the following
example:

struct hostent *result = explain_gethostbyname_or_die(name);

SEE ALSO
gethostbyname(3)

get host address given host name

explain_gethostbyname(3)
explaingethostbyname(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

411

explain_gethostid(3) explain_gethostid(3)

NAME
explain_gethostid − explaingethostid(3) errors

SYNOPSIS
#include <libexplain/gethostid.h>

const char *explain_gethostid(void);
const char *explain_errno_gethostid(int errnum, void);
void explain_message_gethostid(char *message, int message_size, void);
void explain_message_errno_gethostid(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegethostid(3) system call.

explain_gethostid
const char *explain_gethostid(void);

The explain_gethostidfunction is used to obtain an explanation of an error returned by thegethostid(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
long result = gethostid();
if (result < 0 || errno != 0)
{

fprintf(stderr, "%s\n", explain_gethostid());
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_gethostid_or_die(3) function.

explain_errno_gethostid
const char *explain_errno_gethostid(int errnum, void);

The explain_errno_gethostid function is used to obtain an explanation of an error returned by the
gethostid(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
long result = gethostid();
if (result < 0 || errno != 0)

412

explain_gethostid(3) explain_gethostid(3)

{
int err = errno;

fprintf(stderr, "%s\n", explain_errno_gethostid(err,));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_gethostid_or_die(3) function.

explain_message_gethostid
void explain_message_gethostid(char *message, int message_size, void);

The explain_message_gethostidfunction is used to obtain an explanation of an error returned by the
gethostid(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
long result = gethostid();
if (result < 0 || errno != 0)
{

char message[3000];
explain_message_gethostid(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_gethostid_or_die(3) function.

explain_message_errno_gethostid
void explain_message_errno_gethostid(char *message, int message_size, int errnum, void);

The explain_message_errno_gethostidfunction is used to obtain an explanation of an error returned by
thegethostid(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
long result = gethostid();
if (result < 0 || errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_gethostid(message, sizeof(message), err,
);
fprintf(stderr, "%s\n", message);

413

explain_gethostid(3) explain_gethostid(3)

exit(EXIT_FAILURE);
}

The above code example is available pre−packaged as theexplain_gethostid_or_die(3) function.

SEE ALSO
gethostid(3)

get the unique identifier of the current host

explain_gethostid_or_die(3)
get the unique identifier of the current host and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

414

explain_gethostid_or_die(3) explain_gethostid_or_die(3)

NAME
explain_gethostid_or_die − get the unique identifier of the current host and report errors

SYNOPSIS
#include <libexplain/gethostid.h>

long explain_gethostid_or_die(void);
long explain_gethostid_on_error(void);

DESCRIPTION
The explain_gethostid_or_die function is used to call thegethostid(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_gethostid(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_gethostid_on_error function is used to call thegethostid(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_gethostid(3) function, but still returns to the
caller.

RETURN VALUE
Theexplain_gethostid_or_diefunction only returns on success, seegethostid(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_gethostid_on_error function always returns the value return by the wrappedgethostid(3)
system call.

EXAMPLE
The explain_gethostid_or_die function is intended to be used in a fashion similar to the following
example:

long result = explain_gethostid_or_die();

SEE ALSO
gethostid(3)

get the unique identifier of the current host

explain_gethostid(3)
explaingethostid(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

415

explain_gethostname(3) explain_gethostname(3)

NAME
explain_gethostname − explain gethostname(2) errors

SYNOPSIS
#include <libexplain/gethostname.h>

const char *explain_gethostname(char *data, size_t data_size);
const char *explain_errno_gethostname(int errnum, char *data, size_t data_size);
void explain_message_gethostname(char *message, int message_size, char *data, size_t data_size);
void explain_message_errno_gethostname(char *message, int message_size, int errnum, char *data, size_t
data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegethostname(2) system call.

explain_gethostname
const char *explain_gethostname(char *data, size_t data_size);

The explain_gethostname function is used to obtain an explanation of an error returned by the
gethostname(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (gethostname(data, data_size) < 0)
{

fprintf(stderr, "%s\n", explain_gethostname(data, data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_gethostname_or_die(3) function.

data The original data, exactly as passed to thegethostname(2) system call.

data_size
The original data_size, exactly as passed to thegethostname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_gethostname
const char *explain_errno_gethostname(int errnum, char *data, size_t data_size);

The explain_errno_gethostnamefunction is used to obtain an explanation of an error returned by the
gethostname(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (gethostname(data, data_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_gethostname(err, data, data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_gethostname_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

416

explain_gethostname(3) explain_gethostname(3)

explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thegethostname(2) system call.

data_size
The original data_size, exactly as passed to thegethostname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_gethostname
void explain_message_gethostname(char *message, int message_size, char *data, size_t data_size);

The explain_message_gethostnamefunction is used to obtain an explanation of an error returned by the
gethostname(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (gethostname(data, data_size) < 0)
{

char message[3000];
explain_message_gethostname(message, sizeof(message), data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_gethostname_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thegethostname(2) system call.

data_size
The original data_size, exactly as passed to thegethostname(2) system call.

explain_message_errno_gethostname
void explain_message_errno_gethostname(char *message, int message_size, int errnum, char *data, size_t
data_size);

The explain_message_errno_gethostnamefunction is used to obtain an explanation of an error returned
by the gethostname(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (gethostname(data, data_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_gethostname(message, sizeof(message), err, data,

data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_gethostname_or_die(3) function.

417

explain_gethostname(3) explain_gethostname(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thegethostname(2) system call.

data_size
The original data_size, exactly as passed to thegethostname(2) system call.

SEE ALSO
gethostname(2)

get/set hostname

explain_gethostname_or_die(3)
get/set hostname and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

418

explain_gethostname_or_die(3) explain_gethostname_or_die(3)

NAME
explain_gethostname_or_die − get/set hostname and report errors

SYNOPSIS
#include <libexplain/gethostname.h>

void explain_gethostname_or_die(char *data, size_t data_size);
intexplain_gethostname_on_error(char *data, size_t data_size);

DESCRIPTION
The explain_gethostname_or_diefunction is used to call thegethostname(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_gethostname(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

Theexplain_gethostname_on_errorfunction is used to call thegethostname(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_gethostname(3) function, but still returns to
the caller.

data The data, exactly as to be passed to thegethostname(2) system call.

data_size
The data_size, exactly as to be passed to thegethostname(2) system call.

RETURN VALUE
The explain_gethostname_or_diefunction only returns on success, seegethostname(2) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_gethostname_on_error function always returns the value return by the wrapped
gethostname(2) system call.

EXAMPLE
The explain_gethostname_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_gethostname_or_die(data, data_size);

SEE ALSO
gethostname(2)

get/set hostname

explain_gethostname(3)
explaingethostname(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

419

explain_getpeername(3) explain_getpeername(3)

NAME
explain_getpeername − explain getpeername(2) errors

SYNOPSIS
#include <libexplain/getpeername.h>

const char *explain_getpeername(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);
const char *explain_errno_getpeername(int errnum, int fildes, struct sockaddr *sock_addr, socklen_t
*sock_addr_size);
void explain_message_getpeername(char *message, int message_size, int fildes, struct sockaddr
*sock_addr, socklen_t *sock_addr_size);
void explain_message_errno_getpeername(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addr, socklen_t *sock_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetpeername(2) system call.

explain_getpeername
const char *explain_getpeername(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);

The explain_getpeername function is used to obtain an explanation of an error returned by the
getpeername(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;
socklen_t sock_addr_len = sizeof(sock_addr);
if (getpeername(fildes, &sock_addr, &sock_addr_size) < 0)
{

fprintf(stderr, "%s\n", explain_getpeername(fildes,
&sock_addr, &sock_addr_size));

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_getpeername_or_die(3) function.

fildes The original fildes, exactly as passed to thegetpeername(2) system call.

sock_addr
The original sock_addr, exactly as passed to thegetpeername(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thegetpeername(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_getpeername
const char *explain_errno_getpeername(int errnum, int fildes, struct sockaddr *sock_addr, socklen_t
*sock_addr_size);

The explain_errno_getpeernamefunction is used to obtain an explanation of an error returned by the
getpeername(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;

420

explain_getpeername(3) explain_getpeername(3)

socklen_t sock_addr_len = sizeof(sock_addr);
if (getpeername(fildes, &sock_addr, &sock_addr_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getpeername(err,

fildes, &sock_addr, &sock_addr_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getpeername_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thegetpeername(2) system call.

sock_addr
The original sock_addr, exactly as passed to thegetpeername(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thegetpeername(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_getpeername
void explain_message_getpeername(char *message, int message_size, int fildes, struct sockaddr
*sock_addr, socklen_t *sock_addr_size);

Theexplain_message_getpeernamefunction may be used to obtain an explanation of an error returned by
the getpeername(2) system call. The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;
socklen_t sock_addr_len = sizeof(sock_addr);
if (getpeername(fildes, &sock_addr, &sock_addr_size) < 0)
{

char message[3000];
explain_message_getpeername(message, sizeof(message),

fildes, &sock_addr, &sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getpeername_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thegetpeername(2) system call.

421

explain_getpeername(3) explain_getpeername(3)

sock_addr
The original sock_addr, exactly as passed to thegetpeername(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thegetpeername(2) system call.

explain_message_errno_getpeername
void explain_message_errno_getpeername(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addr, socklen_t *sock_addr_size);

The explain_message_errno_getpeernamefunction may be used to obtain an explanation of an error
returned by thegetpeername(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;
socklen_t sock_addr_len = sizeof(sock_addr);
if (getpeername(fildes, &sock_addr, &sock_addr_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_getpeername(message, sizeof(message),

err, fildes, &sock_addr, &sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getpeername_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thegetpeername(2) system call.

sock_addr
The original sock_addr, exactly as passed to thegetpeername(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thegetpeername(2) system call.

SEE ALSO
getpeername(2)

get name of connected peer socket

explain_getpeername_or_die(3)
get name of connected peer socket and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

422

explain_getpeername_or_die(3) explain_getpeername_or_die(3)

NAME
explain_getpeername_or_die − get name of peer socket and report errors

SYNOPSIS
#include <libexplain/getpeername.h>

void explain_getpeername_or_die(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);

DESCRIPTION
The explain_getpeername_or_diefunction is used to call thegetpeername(2) system call. On failure an
explanation will be printed tostderr, obtained from explain_getpeername(3), and then the process
terminates by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
struct sockadd sock_addr;
socklen_t sock_addr_size = sizeof(sock_addr);
explain_getpeername_or_die(fildes, &sock_addr, &sock_addr_size);

fildes The fildes, exactly as to be passed to thegetpeername(2) system call.

sock_addr
The sock_addr, exactly as to be passed to thegetpeername(2) system call.

sock_addr_size
The sock_addr_size, exactly as to be passed to thegetpeername(2) system call.

Returns: This function only returns on success, seegetpeername(2) for more information. On failure,
prints an explanation and exits.

SEE ALSO
getpeername(2)

get name of connected peer socket

explain_getpeername(3)
explaingetpeername(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

423

explain_getpgid(3) explain_getpgid(3)

NAME
explain_getpgid − explaingetpgid(2) errors

SYNOPSIS
#include <libexplain/getpgid.h>

const char *explain_getpgid(pid_t pid);
const char *explain_errno_getpgid(int errnum, pid_t pid);
void explain_message_getpgid(char *message, int message_size, pid_t pid);
void explain_message_errno_getpgid(char *message, int message_size, int errnum, pid_t pid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetpgid(2) system call.

explain_getpgid
const char *explain_getpgid(pid_t pid);

The explain_getpgid function is used to obtain an explanation of an error returned by thegetpgid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pid The original pid, exactly as passed to thegetpgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgid(pid);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_getpgid(pid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpgid_or_die(3) function.

explain_errno_getpgid
const char *explain_errno_getpgid(int errnum, pid_t pid);

Theexplain_errno_getpgidfunction is used to obtain an explanation of an error returned by thegetpgid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thegetpgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgid(pid);

424

explain_getpgid(3) explain_getpgid(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getpgid(err, pid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpgid_or_die(3) function.

explain_message_getpgid
void explain_message_getpgid(char *message, int message_size, pid_t pid);

The explain_message_getpgidfunction is used to obtain an explanation of an error returned by the
getpgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to thegetpgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgid(pid);
if (result < 0)
{

char message[3000];
explain_message_getpgid(message, sizeof(message), pid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpgid_or_die(3) function.

explain_message_errno_getpgid
void explain_message_errno_getpgid(char *message, int message_size, int errnum, pid_t pid);

Theexplain_message_errno_getpgidfunction is used to obtain an explanation of an error returned by the
getpgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thegetpgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgid(pid);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getpgid(message, sizeof(message), err,

425

explain_getpgid(3) explain_getpgid(3)

pid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpgid_or_die(3) function.

SEE ALSO
getpgid(2)

get process group

explain_getpgid_or_die(3)
get process group and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

426

explain_getpgid_or_die(3) explain_getpgid_or_die(3)

NAME
explain_getpgid_or_die − get process group and report errors

SYNOPSIS
#include <libexplain/getpgid.h>

pid_t explain_getpgid_or_die(pid_t pid);
pid_t explain_getpgid_on_error(pid_t pid);

DESCRIPTION
The explain_getpgid_or_diefunction is used to call thegetpgid(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_getpgid(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_getpgid_on_error function is used to call thegetpgid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getpgid(3) function, but still returns to the
caller.

pid The pid, exactly as to be passed to thegetpgid(2) system call.

RETURN VALUE
The explain_getpgid_or_diefunction only returns on success, seegetpgid(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_getpgid_on_errorfunction always returns the value return by the wrappedgetpgid(2) system
call.

EXAMPLE
Theexplain_getpgid_or_diefunction is intended to be used in a fashion similar to the following example:

pid_t result = explain_getpgid_or_die(pid);

SEE ALSO
getpgid(2)

get process group

explain_getpgid(3)
explaingetpgid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

427

explain_getpgrp(3) explain_getpgrp(3)

NAME
explain_getpgrp − explaingetpgrp(2) errors

SYNOPSIS
#include <libexplain/getpgrp.h>

const char *explain_getpgrp(pid_t pid);
const char *explain_errno_getpgrp(int errnum, pid_t pid);
void explain_message_getpgrp(char *message, int message_size, pid_t pid);
void explain_message_errno_getpgrp(char *message, int message_size, int errnum, pid_t pid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetpgrp(2) system call.

Note: thegetpgrp(2) function has two implementations. ThePOSIX.1 version has no arguments, while the
BSD version has one argument. For simplicity of implementation, the argument list seen here includes the
pid argument.

The POSIX.1getpgid() semantics can be obtained by callinggetpgrp(0) on BSD systems, and this
is the API for libexplain, even on systems that do not use the BSD API.

explain_getpgrp
const char *explain_getpgrp(pid_t pid);

The explain_getpgrp function is used to obtain an explanation of an error returned by thegetpgrp(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pid The original pid, exactly as passed to thegetpgrp(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgrp(pid);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_getpgrp(pid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpgrp_or_die(3) function.

explain_errno_getpgrp
const char *explain_errno_getpgrp(int errnum, pid_t pid);

The explain_errno_getpgrp function is used to obtain an explanation of an error returned by the
getpgrp(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thegetpgrp(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

428

explain_getpgrp(3) explain_getpgrp(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgrp(pid);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getpgrp(err, pid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpgrp_or_die(3) function.

explain_message_getpgrp
void explain_message_getpgrp(char *message, int message_size, pid_t pid);

The explain_message_getpgrpfunction is used to obtain an explanation of an error returned by the
getpgrp(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to thegetpgrp(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = getpgrp(pid);
if (result < 0)
{

char message[3000];
explain_message_getpgrp(message, sizeof(message), pid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpgrp_or_die(3) function.

explain_message_errno_getpgrp
void explain_message_errno_getpgrp(char *message, int message_size, int errnum, pid_t pid);

Theexplain_message_errno_getpgrpfunction is used to obtain an explanation of an error returned by the
getpgrp(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thegetpgrp(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:

429

explain_getpgrp(3) explain_getpgrp(3)

pid_t result = getpgrp(pid);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getpgrp(message, sizeof(message), err,
pid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpgrp_or_die(3) function.

SEE ALSO
getpgrp(2)

get process group

explain_getpgrp_or_die(3)
get process group and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

430

explain_getpgrp_or_die(3) explain_getpgrp_or_die(3)

NAME
explain_getpgrp_or_die − get process group and report errors

SYNOPSIS
#include <libexplain/getpgrp.h>

pid_t explain_getpgrp_or_die(pid_t pid);
pid_t explain_getpgrp_on_error(pid_t pid);

DESCRIPTION
Theexplain_getpgrp_or_diefunction is used to call thegetpgrp(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_getpgrp(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_getpgrp_on_error function is used to call thegetpgrp(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getpgrp(3) function, but still returns to the
caller.

pid The pid, exactly as to be passed to thegetpgrp(2) system call.

API Inconsistencies
Note: thegetpgrp(2) function has two implementations. ThePOSIX.1 version has no arguments, while the
BSD version has one argument. For simplicity of implementation, the argument list seen here includes the
pid argument.

The POSIX.1getpgid() semanatics can be obtained by callinggetpgrp(0) on BSD systems, and
this is the API for libexplain, even on systems that do not use the BSD API.

RETURN VALUE
The explain_getpgrp_or_diefunction only returns on success, seegetpgrp(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_getpgrp_on_errorfunction always returns the value return by the wrappedgetpgrp(2) system
call.

EXAMPLE
Theexplain_getpgrp_or_diefunction is intended to be used in a fashion similar to the following example:

pid_t result = explain_getpgrp_or_die(pid);

SEE ALSO
getpgrp(2)

get process group

explain_getpgrp(3)
explaingetpgrp(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

431

explain_getpriority(3) explain_getpriority(3)

NAME
explain_getpriority − explaingetpriority(2) errors

SYNOPSIS
#include <libexplain/getpriority.h>

const char *explain_getpriority(int which, int who);
const char *explain_errno_getpriority(int errnum, int which, int who);
void explain_message_getpriority(char *message, int message_size, int which, int who);
void explain_message_errno_getpriority(char *message, int message_size, int errnum, int which, int who);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetpriority(2) system call.

explain_getpriority
const char *explain_getpriority(int which, int who);

Theexplain_getpriority function is used to obtain an explanation of an error returned by thegetpriority(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

which The original which, exactly as passed to thegetpriority(2) system call.

who The original who, exactly as passed to thegetpriority(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getpriority(which, who);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_getpriority(which, who));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpriority_or_die(3) function.

explain_errno_getpriority
const char *explain_errno_getpriority(int errnum, int which, int who);

The explain_errno_getpriority function is used to obtain an explanation of an error returned by the
getpriority(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

which The original which, exactly as passed to thegetpriority(2) system call.

who The original who, exactly as passed to thegetpriority(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

432

explain_getpriority(3) explain_getpriority(3)

Example: This function is intended to be used in a fashion similar to the following example:
int result = getpriority(which, who);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getpriority(err, which,
who));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpriority_or_die(3) function.

explain_message_getpriority
void explain_message_getpriority(char *message, int message_size, int which, int who);

The explain_message_getpriorityfunction is used to obtain an explanation of an error returned by the
getpriority(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

which The original which, exactly as passed to thegetpriority(2) system call.

who The original who, exactly as passed to thegetpriority(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getpriority(which, who);
if (result < 0)
{

char message[3000];
explain_message_getpriority(message, sizeof(message), which,
who);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpriority_or_die(3) function.

explain_message_errno_getpriority
void explain_message_errno_getpriority(char *message, int message_size, int errnum, int which, int who);

Theexplain_message_errno_getpriorityfunction is used to obtain an explanation of an error returned by
thegetpriority(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

which The original which, exactly as passed to thegetpriority(2) system call.

who The original who, exactly as passed to thegetpriority(2) system call.

433

explain_getpriority(3) explain_getpriority(3)

Example: This function is intended to be used in a fashion similar to the following example:
int result = getpriority(which, who);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getpriority(message, sizeof(message),
err, which, who);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getpriority_or_die(3) function.

SEE ALSO
getpriority(2)

get program scheduling priority

explain_getpriority_or_die(3)
get program scheduling priority and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

434

explain_getpriority_or_die(3) explain_getpriority_or_die(3)

NAME
explain_getpriority_or_die − get program scheduling priority and report errors

SYNOPSIS
#include <libexplain/getpriority.h>

int explain_getpriority_or_die(int which, int who);
int explain_getpriority_on_error(int which, int who);

DESCRIPTION
The explain_getpriority_or_die function is used to call thegetpriority(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getpriority(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_getpriority_on_error function is used to call thegetpriority(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getpriority(3) function, but still returns to
the caller.

which The which, exactly as to be passed to thegetpriority(2) system call.

who The who, exactly as to be passed to thegetpriority(2) system call.

RETURN VALUE
Theexplain_getpriority_or_die function only returns on success, seegetpriority(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_getpriority_on_error function always returns the value return by the wrappedgetpriority(2)
system call.

EXAMPLE
The explain_getpriority_or_die function is intended to be used in a fashion similar to the following
example:

int result = explain_getpriority_or_die(which, who);

SEE ALSO
getpriority(2)

get program scheduling priority

explain_getpriority(3)
explaingetpriority(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

435

explain_getresgid(3) explain_getresgid(3)

NAME
explain_getresgid − explaingetresgid(2) errors

SYNOPSIS
#include <libexplain/getresgid.h>

const char *explain_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid);
const char *explain_errno_getresgid(int errnum, gid_t *rgid, gid_t *egid, gid_t *sgid);
void explain_message_getresgid(char *message, int message_size, gid_t *rgid, gid_t *egid, gid_t *sgid);
void explain_message_errno_getresgid(char *message, int message_size, int errnum, gid_t *rgid, gid_t
*egid, gid_t *sgid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetresgid(2) system call.

explain_getresgid
const char *explain_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid);

The explain_getresgidfunction is used to obtain an explanation of an error returned by thegetresgid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

rgid The original rgid, exactly as passed to thegetresgid(2) system call.

egid The original egid, exactly as passed to thegetresgid(2) system call.

sgid The original sgid, exactly as passed to thegetresgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresgid(rgid, egid, sgid) < 0)
{

fprintf(stderr, "%s\n", explain_getresgid(rgid, egid, sgid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getresgid_or_die(3) function.

explain_errno_getresgid
const char *explain_errno_getresgid(int errnum, gid_t *rgid, gid_t *egid, gid_t *sgid);

The explain_errno_getresgid function is used to obtain an explanation of an error returned by the
getresgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

rgid The original rgid, exactly as passed to thegetresgid(2) system call.

egid The original egid, exactly as passed to thegetresgid(2) system call.

sgid The original sgid, exactly as passed to thegetresgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

436

explain_getresgid(3) explain_getresgid(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresgid(rgid, egid, sgid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getresgid(err, rgid,
egid, sgid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getresgid_or_die(3) function.

explain_message_getresgid
void explain_message_getresgid(char *message, int message_size, gid_t *rgid, gid_t *egid, gid_t *sgid);

The explain_message_getresgidfunction is used to obtain an explanation of an error returned by the
getresgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

rgid The original rgid, exactly as passed to thegetresgid(2) system call.

egid The original egid, exactly as passed to thegetresgid(2) system call.

sgid The original sgid, exactly as passed to thegetresgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresgid(rgid, egid, sgid) < 0)
{

char message[3000];
explain_message_getresgid(message, sizeof(message), rgid,
egid, sgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getresgid_or_die(3) function.

explain_message_errno_getresgid
void explain_message_errno_getresgid(char *message, int message_size, int errnum, gid_t *rgid, gid_t
*egid, gid_t *sgid);

The explain_message_errno_getresgidfunction is used to obtain an explanation of an error returned by
thegetresgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

437

explain_getresgid(3) explain_getresgid(3)

rgid The original rgid, exactly as passed to thegetresgid(2) system call.

egid The original egid, exactly as passed to thegetresgid(2) system call.

sgid The original sgid, exactly as passed to thegetresgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresgid(rgid, egid, sgid) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getresgid(message, sizeof(message), err,
rgid, egid, sgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getresgid_or_die(3) function.

SEE ALSO
getresgid(2)

get real, effective and saved group IDs

explain_getresgid_or_die(3)
get real, effective and saved group IDs and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

438

explain_getresgid_or_die(3) explain_getresgid_or_die(3)

NAME
explain_getresgid_or_die − get r/e/s group IDs and report errors

SYNOPSIS
#include <libexplain/getresgid.h>

void explain_getresgid_or_die(gid_t *rgid, gid_t *egid, gid_t *sgid);
int explain_getresgid_on_error(gid_t *rgid, gid_t *egid, gid_t *sgid);

DESCRIPTION
The explain_getresgid_or_die function is used to call thegetresgid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getresgid(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_getresgid_on_error function is used to call thegetresgid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getresgid(3) function, but still returns to the
caller.

rgid The rgid, exactly as to be passed to thegetresgid(2) system call.

egid The egid, exactly as to be passed to thegetresgid(2) system call.

sgid The sgid, exactly as to be passed to thegetresgid(2) system call.

RETURN VALUE
Theexplain_getresgid_or_diefunction only returns on success, seegetresgid(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_getresgid_on_error function always returns the value return by the wrappedgetresgid(2)
system call.

EXAMPLE
The explain_getresgid_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_getresgid_or_die(rgid, egid, sgid);

SEE ALSO
getresgid(2)

get real, effective and saved group IDs

explain_getresgid(3)
explaingetresgid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

439

explain_getresuid(3) explain_getresuid(3)

NAME
explain_getresuid − explaingetresuid(2) errors

SYNOPSIS
#include <libexplain/getresuid.h>

const char *explain_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid);
const char *explain_errno_getresuid(int errnum, uid_t *ruid, uid_t *euid, uid_t *suid);
void explain_message_getresuid(char *message, int message_size, uid_t *ruid, uid_t *euid, uid_t *suid);
void explain_message_errno_getresuid(char *message, int message_size, int errnum, uid_t *ruid, uid_t
*euid, uid_t *suid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetresuid(2) system call.

explain_getresuid
const char *explain_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid);

The explain_getresuidfunction is used to obtain an explanation of an error returned by thegetresuid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

ruid The original ruid, exactly as passed to thegetresuid(2) system call.

euid The original euid, exactly as passed to thegetresuid(2) system call.

suid The original suid, exactly as passed to thegetresuid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresuid(ruid, euid, suid) < 0)
{

fprintf(stderr, "%s\n", explain_getresuid(ruid, euid, suid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getresuid_or_die(3) function.

explain_errno_getresuid
const char *explain_errno_getresuid(int errnum, uid_t *ruid, uid_t *euid, uid_t *suid);

The explain_errno_getresuid function is used to obtain an explanation of an error returned by the
getresuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ruid The original ruid, exactly as passed to thegetresuid(2) system call.

euid The original euid, exactly as passed to thegetresuid(2) system call.

suid The original suid, exactly as passed to thegetresuid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

440

explain_getresuid(3) explain_getresuid(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresuid(ruid, euid, suid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getresuid(err, ruid,
euid, suid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getresuid_or_die(3) function.

explain_message_getresuid
void explain_message_getresuid(char *message, int message_size, uid_t *ruid, uid_t *euid, uid_t *suid);

The explain_message_getresuidfunction is used to obtain an explanation of an error returned by the
getresuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

ruid The original ruid, exactly as passed to thegetresuid(2) system call.

euid The original euid, exactly as passed to thegetresuid(2) system call.

suid The original suid, exactly as passed to thegetresuid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresuid(ruid, euid, suid) < 0)
{

char message[3000];
explain_message_getresuid(message, sizeof(message), ruid,
euid, suid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getresuid_or_die(3) function.

explain_message_errno_getresuid
void explain_message_errno_getresuid(char *message, int message_size, int errnum, uid_t *ruid, uid_t
*euid, uid_t *suid);

The explain_message_errno_getresuidfunction is used to obtain an explanation of an error returned by
thegetresuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

441

explain_getresuid(3) explain_getresuid(3)

ruid The original ruid, exactly as passed to thegetresuid(2) system call.

euid The original euid, exactly as passed to thegetresuid(2) system call.

suid The original suid, exactly as passed to thegetresuid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getresuid(ruid, euid, suid) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getresuid(message, sizeof(message), err,
ruid, euid, suid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getresuid_or_die(3) function.

SEE ALSO
getresuid(2)

get real, effective and saved user IDs

explain_getresuid_or_die(3)
get real, effective and saved user IDs and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

442

explain_getresuid_or_die(3) explain_getresuid_or_die(3)

NAME
explain_getresuid_or_die − get r/e/s user IDs and report errors

SYNOPSIS
#include <libexplain/getresuid.h>

void explain_getresuid_or_die(uid_t *ruid, uid_t *euid, uid_t *suid);
int explain_getresuid_on_error(uid_t *ruid, uid_t *euid, uid_t *suid);

DESCRIPTION
The explain_getresuid_or_die function is used to call thegetresuid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getresuid(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_getresuid_on_error function is used to call thegetresuid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getresuid(3) function, but still returns to the
caller.

ruid The ruid, exactly as to be passed to thegetresuid(2) system call.

euid The euid, exactly as to be passed to thegetresuid(2) system call.

suid The suid, exactly as to be passed to thegetresuid(2) system call.

RETURN VALUE
Theexplain_getresuid_or_diefunction only returns on success, seegetresuid(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_getresuid_on_error function always returns the value return by the wrappedgetresuid(2)
system call.

EXAMPLE
The explain_getresuid_or_die function is intended to be used in a fashion similar to the following
example:

explain_getresuid_or_die(ruid, euid, suid);

SEE ALSO
getresuid(2)

get real, effective and saved user IDs

explain_getresuid(3)
explaingetresuid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

443

explain_getrlimit(3) explain_getrlimit(3)

NAME
explain_getrlimit − explain getrlimit(2) errors

SYNOPSIS
#include <libexplain/getrlimit.h>

const char *explain_getrlimit(int resource, struct rlimit *rlim);
const char *explain_errno_getrlimit(int errnum, int resource, struct rlimit *rlim);
void explain_message_getrlimit(char *message, int message_size, int resource, struct rlimit *rlim);
void explain_message_errno_getrlimit(char *message, int message_size, int errnum, int resource, struct
rlimit *rlim);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetrlimit (2) system call.

explain_getrlimit
const char *explain_getrlimit(int resource, struct rlimit *rlim);

The explain_getrlimit function is used to obtain an explanation of an error returned by thegetrlimit (2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getrlimit(resource, rlim) < 0)
{

fprintf(stderr, "%s\n", explain_getrlimit(resource, rlim));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getrlimit_or_die(3) function.

resource The original resource, exactly as passed to thegetrlimit (2) system call.

rlim The original rlim, exactly as passed to thegetrlimit (2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_getrlimit
const char *explain_errno_getrlimit(int errnum, int resource, struct rlimit *rlim);

The explain_errno_getrlimit function is used to obtain an explanation of an error returned by the
getrlimit (2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getrlimit(resource, rlim) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getrlimit(err, resource, rlim));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getrlimit_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

444

explain_getrlimit(3) explain_getrlimit(3)

resource The original resource, exactly as passed to thegetrlimit (2) system call.

rlim The original rlim, exactly as passed to thegetrlimit (2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_getrlimit
void explain_message_getrlimit(char *message, int message_size, int resource, struct rlimit *rlim);

Theexplain_message_getrlimitfunction may be used toobtain an explanation of an error returned by the
getrlimit (2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getrlimit(resource, rlim) < 0)
{

char message[3000];
explain_message_getrlimit(message, sizeof(message), resource, rlim);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getrlimit_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

resource The original resource, exactly as passed to thegetrlimit (2) system call.

rlim The original rlim, exactly as passed to thegetrlimit (2) system call.

explain_message_errno_getrlimit
void explain_message_errno_getrlimit(char *message, int message_size, int errnum, int resource, struct
rlimit *rlim);

Theexplain_message_errno_getrlimitfunction may be used to obtain an explanation of an error returned
by thegetrlimit (2) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getrlimit(resource, rlim) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_getrlimit(message, sizeof(message),

err, resource, rlim);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getrlimit_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

445

explain_getrlimit(3) explain_getrlimit(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

resource The original resource, exactly as passed to thegetrlimit (2) system call.

rlim The original rlim, exactly as passed to thegetrlimit (2) system call.

SEE ALSO
getrlimit (2)

get resource limits

explain_getrlimit_or_die(3)
get resource limits and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

446

explain_getrlimit_or_die(3) explain_getrlimit_or_die(3)

NAME
explain_getrlimit_or_die − get resource limits and report errors

SYNOPSIS
#include <libexplain/getrlimit.h>

void explain_getrlimit_or_die(int resource, struct rlimit *rlim);

DESCRIPTION
The explain_getrlimit_or_die function is used to call thegetrlimit (2) system call. On failure an
explanation will be printed tostderr, obtained fromexplain_getrlimit(3), and then the process terminates by
callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_getrlimit_or_die(resource, rlim);

resource The resource, exactly as to be passed to thegetrlimit (2) system call.

rlim The rlim, exactly as to be passed to thegetrlimit (2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getrlimit (2)

get resource limits

explain_getrlimit(3)
explaingetrlimit (2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

447

explain_getrusage(3) explain_getrusage(3)

NAME
explain_getrusage − explaingetrusage(2) errors

SYNOPSIS
#include <libexplain/getrusage.h>

const char *explain_getrusage(int who, struct rusage *usage);
const char *explain_errno_getrusage(int errnum, int who, struct rusage *usage);
void explain_message_getrusage(char *message, int message_size, int who, struct rusage *usage);
void explain_message_errno_getrusage(char *message, int message_size, int errnum, int who, struct rusage
*usage);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetrusage(2) system call.

explain_getrusage
const char *explain_getrusage(int who, struct rusage *usage);

The explain_getrusagefunction is used to obtain an explanation of an error returned by thegetrusage(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

who The original who, exactly as passed to thegetrusage(2) system call.

usage The original usage, exactly as passed to thegetrusage(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (getrusage(who, usage) < 0)
{

fprintf(stderr, "%s\n", explain_getrusage(who, usage));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getrusage_or_die(3) function.

explain_errno_getrusage
const char *explain_errno_getrusage(int errnum, int who, struct rusage *usage);

The explain_errno_getrusagefunction is used to obtain an explanation of an error returned by the
getrusage(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

who The original who, exactly as passed to thegetrusage(2) system call.

usage The original usage, exactly as passed to thegetrusage(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

448

explain_getrusage(3) explain_getrusage(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (getrusage(who, usage) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getrusage(err, who,
usage));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getrusage_or_die(3) function.

explain_message_getrusage
void explain_message_getrusage(char *message, int message_size, int who, struct rusage *usage);

The explain_message_getrusagefunction is used to obtain an explanation of an error returned by the
getrusage(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

who The original who, exactly as passed to thegetrusage(2) system call.

usage The original usage, exactly as passed to thegetrusage(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (getrusage(who, usage) < 0)
{

char message[3000];
explain_message_getrusage(message, sizeof(message), who,
usage);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getrusage_or_die(3) function.

explain_message_errno_getrusage
void explain_message_errno_getrusage(char *message, int message_size, int errnum, int who, struct rusage
*usage);

The explain_message_errno_getrusagefunction is used to obtain an explanation of an error returned by
thegetrusage(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

who The original who, exactly as passed to thegetrusage(2) system call.

usage The original usage, exactly as passed to thegetrusage(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:

449

explain_getrusage(3) explain_getrusage(3)

if (getrusage(who, usage) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getrusage(message, sizeof(message), err,
who, usage);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_getrusage_or_die(3) function.

SEE ALSO
getrusage(2)

get resource usage

explain_getrusage_or_die(3)
get resource usage and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

450

explain_getrusage_or_die(3) explain_getrusage_or_die(3)

NAME
explain_getrusage_or_die − get resource usage and report errors

SYNOPSIS
#include <libexplain/getrusage.h>

void explain_getrusage_or_die(int who, struct rusage *usage);
int explain_getrusage_on_error(int who, struct rusage *usage);

DESCRIPTION
The explain_getrusage_or_diefunction is used to call thegetrusage(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getrusage(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_getrusage_on_errorfunction is used to call thegetrusage(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_getrusage(3) function, but still returns to
the caller.

who The who, exactly as to be passed to thegetrusage(2) system call.

usage The usage, exactly as to be passed to thegetrusage(2) system call.

RETURN VALUE
The explain_getrusage_or_diefunction only returns on success, seegetrusage(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_getrusage_on_errorfunction always returns the value return by the wrappedgetrusage(2)
system call.

EXAMPLE
The explain_getrusage_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_getrusage_or_die(who, usage);

SEE ALSO
getrusage(2)

get resource usage

explain_getrusage(3)
explaingetrusage(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

451

explain_getsockname(3) explain_getsockname(3)

NAME
explain_getsockname − explain getsockname(2) errors

SYNOPSIS
#include <libexplain/getsockname.h>

const char *explain_getsockname(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);
const char *explain_errno_getsockname(int errnum, int fildes, struct sockaddr *sock_addr, socklen_t
*sock_addr_size);
void explain_message_getsockname(char *message, int message_size, int fildes, struct sockaddr
*sock_addr, socklen_t *sock_addr_size);
void explain_message_errno_getsockname(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addr, socklen_t *sock_addr_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetsockname(2) system call.

explain_getsockname
const char *explain_getsockname(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);

The explain_getsocknamefunction is used to obtain an explanation of an error returned by the
getsockname(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;
socklen_t sock_addr_size = sizeof(sock_addr);
if (getsockname(fildes, &sock_addr, &sock_addr_size) < 0)
{

fprintf(stderr, "%s\n", explain_getsockname(fildes,
&sock_addr, &sock_addr_size));

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_getsockname_or_die(3) function.

fildes The original fildes, exactly as passed to thegetsockname(2) system call.

sock_addr
The original sock_addr, exactly as passed to thegetsockname(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thegetsockname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_getsockname
const char *explain_errno_getsockname(int errnum, int fildes, struct sockaddr *sock_addr, socklen_t
*sock_addr_size);

The explain_errno_getsocknamefunction is used to obtain an explanation of an error returned by the
getsockname(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;

452

explain_getsockname(3) explain_getsockname(3)

socklen_t sock_addr_size = sizeof(sock_addr);
if (getsockname(fildes, &sock_addr, &sock_addr_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getsockname(err,

fildes, &sock_addr, &sock_addr_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getsockname_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thegetsockname(2) system call.

sock_addr
The original sock_addr, exactly as passed to thegetsockname(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thegetsockname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_getsockname
void explain_message_getsockname(char *message, int message_size, int fildes, struct sockaddr
*sock_addr, socklen_t *sock_addr_size);

Theexplain_message_getsocknamefunction may be used to obtain an explanation of an error returned by
the getsockname(2) system call. The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;
socklen_t sock_addr_size = sizeof(sock_addr);
if (getsockname(fildes, &sock_addr, &sock_addr_size) < 0)
{

char message[3000];
explain_message_getsockname(message, sizeof(message),

fildes, &sock_addr, &sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getsockname_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thegetsockname(2) system call.

453

explain_getsockname(3) explain_getsockname(3)

sock_addr
The original sock_addr, exactly as passed to thegetsockname(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thegetsockname(2) system call.

explain_message_errno_getsockname
void explain_message_errno_getsockname(char *message, int message_size, int errnum, int fildes, struct
sockaddr *sock_addr, socklen_t *sock_addr_size);

The explain_message_errno_getsocknamefunction may be used to obtain an explanation of an error
returned by thegetsockname(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;
socklen_t sock_addr_size = sizeof(sock_addr);
if (getsockname(fildes, &sock_addr, &sock_addr_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_getsockname(message, sizeof(message),

err, fildes, &sock_addr, &sock_addr_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getsockname_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thegetsockname(2) system call.

sock_addr
The original sock_addr, exactly as passed to thegetsockname(2) system call.

sock_addr_size
The original sock_addr_size, exactly as passed to thegetsockname(2) system call.

SEE ALSO
getsockname(2)

get socket name

explain_getsockname_or_die(3)
get socket name and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

454

explain_getsockname_or_die(3) explain_getsockname_or_die(3)

NAME
explain_getsockname_or_die − get socket name and report errors

SYNOPSIS
#include <libexplain/getsockname.h>

void explain_getsockname_or_die(int fildes, struct sockaddr *sock_addr, socklen_t *sock_addr_size);

DESCRIPTION
The explain_getsockname_or_diefunction is used to call thegetsockname(2) system call.On failure an
explanation will be printed tostderr, obtained from explain_getsockname(3), and then the process
terminates by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
struct sockaddr sock_addr;
socklen_t sock_addr_size = sizeof(sock_addr);
explain_getsockname_or_die(fildes, &sock_addr, &sock_addr_size);

fildes The fildes, exactly as to be passed to thegetsockname(2) system call.

sock_addr
The sock_addr, exactly as to be passed to thegetsockname(2) system call.

sock_addr_size
The sock_addr_size, exactly as to be passed to thegetsockname(2) system call.

Returns: This function only returns on success, seegetsockaddr(1) for more information. On failure,
prints an explanation and exits.

SEE ALSO
getsockname(2)

get socket name

explain_getsockname(3)
explaingetsockname(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

455

explain_getsockopt(3) explain_getsockopt(3)

NAME
explain_getsockopt − explain getsockopt(2) errors

SYNOPSIS
#include <libexplain/getsockopt.h>

const char *explain_getsockopt(int fildes, int level, int name, void *data, socklen_t *data_size);
const char *explain_errno_getsockopt(int errnum, int fildes, int level, int name, void *data, socklen_t
*data_size);
void explain_message_getsockopt(char *message, int message_size, int fildes, int level, int name, void
*data, socklen_t *data_size);
void explain_message_errno_getsockopt(char *message, int message_size, int errnum, int fildes, int level,
int name, void *data, socklen_t *data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetsockopt(2) system call.

explain_getsockopt
const char *explain_getsockopt(int fildes, int level, int name, void *data, socklen_t *data_size);

Theexplain_getsockoptfunction is used to obtain an explanation of an error returned by thegetsockopt(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getsockopt(fildes, level, name, data, data_size) < 0)
{

fprintf(stderr, "%s\n", explain_getsockopt(fildes,
level, name, data, data_size));

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_getsockopt_or_die(3) function.

fildes The original fildes, exactly as passed to thegetsockopt(2) system call.

level The original level, exactly as passed to thegetsockopt(2) system call.

name The original name, exactly as passed to thegetsockopt(2) system call.

data The original data, exactly as passed to thegetsockopt(2) system call.

data_size
The original data_size, exactly as passed to thegetsockopt(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_getsockopt
const char *explain_errno_getsockopt(int errnum, int fildes, int level, int name, void *data, socklen_t
*data_size);

The explain_errno_getsockoptfunction is used to obtain an explanation of an error returned by the
getsockopt(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (getsockopt(fildes, level, name, data, data_size) < 0)

456

explain_getsockopt(3) explain_getsockopt(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_getsockopt(err,

fildes, level, name, data, data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getsockopt_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thegetsockopt(2) system call.

level The original level, exactly as passed to thegetsockopt(2) system call.

name The original name, exactly as passed to thegetsockopt(2) system call.

data The original data, exactly as passed to thegetsockopt(2) system call.

data_size
The original data_size, exactly as passed to thegetsockopt(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_getsockopt
void explain_message_getsockopt(char *message, int message_size, int fildes, int level, int name, void
*data, socklen_t *data_size);

The explain_message_getsockoptfunction may be used to obtain an explanation of an error returned by
thegetsockopt(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (getsockopt(fildes, level, name, data, data_size) < 0)
{

char message[3000];
explain_message_getsockopt(message, sizeof(message),

fildes, level, name, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getsockopt_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thegetsockopt(2) system call.

level The original level, exactly as passed to thegetsockopt(2) system call.

name The original name, exactly as passed to thegetsockopt(2) system call.

457

explain_getsockopt(3) explain_getsockopt(3)

data The original data, exactly as passed to thegetsockopt(2) system call.

data_size
The original data_size, exactly as passed to thegetsockopt(2) system call.

explain_message_errno_getsockopt
void explain_message_errno_getsockopt(char *message, int message_size, int errnum, int fildes, int level,
int name, void *data, socklen_t *data_size);

The explain_message_errno_getsockoptfunction may be used to obtain an explanation of an error
returned by thegetsockopt(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
if (getsockopt(fildes, level, name, data, data_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_getsockopt(message, sizeof(message),

err, fildes, level, name, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getsockopt_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thegetsockopt(2) system call.

level The original level, exactly as passed to thegetsockopt(2) system call.

name The original name, exactly as passed to thegetsockopt(2) system call.

data The original data, exactly as passed to thegetsockopt(2) system call.

data_size
The original data_size, exactly as passed to thegetsockopt(2) system call.

SEE ALSO
getsockopt(2)

get and set options on sockets

explain_getsockopt_or_die(3)
get and set options on sockets and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

458

explain_getsockopt_or_die(3) explain_getsockopt_or_die(3)

NAME
explain_getsockopt_or_die − get and set options on sockets and report errors

SYNOPSIS
#include <libexplain/getsockopt.h>

void explain_getsockopt_or_die(int fildes, int level, int name, void *data, socklen_t *data_size);

DESCRIPTION
The explain_getsockopt_or_diefunction is used to call thegetsockopt(2) system call. On failure an
explanation will be printed tostderr, obtained fromexplain_getsockopt(3), and then the process terminates
by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_getsockopt_or_die(fildes, level, name, data, data_size);

fildes The fildes, exactly as to be passed to thegetsockopt(2) system call.

level The level, exactly as to be passed to thegetsockopt(2) system call.

name The name, exactly as to be passed to thegetsockopt(2) system call.

data The data, exactly as to be passed to thegetsockopt(2) system call.

data_size
The data_size, exactly as to be passed to thegetsockopt(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
getsockopt(2)

get and set options on sockets

explain_getsockopt(3)
explaingetsockopt(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

459

explain_gettimeofday(3) explain_gettimeofday(3)

NAME
explain_gettimeofday − explain gettimeofday(2) errors

SYNOPSIS
#include <libexplain/gettimeofday.h>

const char *explain_gettimeofday(struct timeval * tv, struct timezone *tz);
const char *explain_errno_gettimeofday(int errnum, struct timeval * tv, struct timezone *tz);
void explain_message_gettimeofday(char *message, int message_size, struct timeval * tv, struct timezone
*tz);
void explain_message_errno_gettimeofday(char *message, int message_size, int errnum, struct timeval * tv,
struct timezone *tz);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegettimeofday(2) system call.

explain_gettimeofday
const char *explain_gettimeofday(struct timeval * tv, struct timezone *tz);

The explain_gettimeofday function is used to obtain an explanation of an error returned by the
gettimeofday(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (gettimeofday(tv, tz) < 0)
{

fprintf(stderr, "%s\n", explain_gettimeofday(tv, tz));
exit(EXIT_FAILURE);

}

tv The original tv, exactly as passed to thegettimeofday(2) system call.

tz The original tz, exactly as passed to thegettimeofday(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_gettimeofday
const char *explain_errno_gettimeofday(int errnum, struct timeval * tv, struct timezone *tz);

The explain_errno_gettimeofday function is used to obtain an explanation of an error returned by the
gettimeofday(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (gettimeofday(tv, tz) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_gettimeofday(err, tv, tz));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

460

explain_gettimeofday(3) explain_gettimeofday(3)

tv The original tv, exactly as passed to thegettimeofday(2) system call.

tz The original tz, exactly as passed to thegettimeofday(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_gettimeofday
void explain_message_gettimeofday(char *message, int message_size, struct timeval * tv, struct timezone
*tz);

The explain_message_gettimeofdayfunction may be used to obtain an explanation of an error returned
by the gettimeofday(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (gettimeofday(tv, tz) < 0)
{

char message[3000];
explain_message_gettimeofday(message, sizeof(message), tv, tz);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

tv The original tv, exactly as passed to thegettimeofday(2) system call.

tz The original tz, exactly as passed to thegettimeofday(2) system call.

explain_message_errno_gettimeofday
void explain_message_errno_gettimeofday(char *message, int message_size, int errnum, struct timeval * tv,
struct timezone *tz);

The explain_message_errno_gettimeofdayfunction may be used to obtain an explanation of an error
returned by thegettimeofday(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
if (gettimeofday(tv, tz) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_gettimeofday(message, sizeof(message), err,

tv, tz);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

461

explain_gettimeofday(3) explain_gettimeofday(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

tv The original tv, exactly as passed to thegettimeofday(2) system call.

tz The original tz, exactly as passed to thegettimeofday(2) system call.

SEE ALSO
gettimeofday(2)

get time

explain_gettimeofday_or_die(3)
get time and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

462

explain_gettimeofday_or_die(3) explain_gettimeofday_or_die(3)

NAME
explain_gettimeofday_or_die − get time and report errors

SYNOPSIS
#include <libexplain/gettimeofday.h>

void explain_gettimeofday_or_die(struct timeval * tv, struct timezone *tz);

DESCRIPTION
The explain_gettimeofday_or_diefunction is used to call thegettimeofday(2) system call.On failure an
explanation will be printed tostderr, obtained from explain_gettimeofday(3), and then the process
terminates by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_gettimeofday_or_die(tv, tz);

tv The tv, exactly as to be passed to thegettimeofday(2) system call.

tz The tz, exactly as to be passed to thegettimeofday(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
gettimeofday(2)

get time

explain_gettimeofday(3)
explaingettimeofday(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

463

explain_getw(3) explain_getw(3)

NAME
explain_getw − explaingetw(3) errors

SYNOPSIS
#include <libexplain/getw.h>

const char *explain_getw(FILE *fp);
const char *explain_errno_getw(int errnum, FILE *fp);
void explain_message_getw(char *message, int message_size, FILE *fp);
void explain_message_errno_getw(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thegetw(3) system call.

explain_getw
const char *explain_getw(FILE *fp);

Theexplain_getwfunction is used to obtain an explanation of an error returned by thegetw(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thegetw(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getw(fp);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_getw(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getw_or_die(3) function.

explain_errno_getw
const char *explain_errno_getw(int errnum, FILE *fp);

The explain_errno_getw function is used to obtain an explanation of an error returned by thegetw(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thegetw(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getw(fp);

464

explain_getw(3) explain_getw(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_getw(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getw_or_die(3) function.

explain_message_getw
void explain_message_getw(char *message, int message_size, FILE *fp);

The explain_message_getwfunction is used to obtain an explanation of an error returned by thegetw(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thegetw(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getw(fp);
if (result < 0)
{

char message[3000];
explain_message_getw(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getw_or_die(3) function.

explain_message_errno_getw
void explain_message_errno_getw(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_getwfunction is used to obtain an explanation of an error returned by the
getw(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thegetw(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = getw(fp);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_getw(message, sizeof(message), err, fp);

465

explain_getw(3) explain_getw(3)

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_getw_or_die(3) function.

SEE ALSO
getw(3) input a word (int)

explain_getw_or_die(3)
input a word (int) and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

466

explain_getw_or_die(3) explain_getw_or_die(3)

NAME
explain_getw_or_die − input a word (int) and report errors

SYNOPSIS
#include <libexplain/getw.h>

int explain_getw_or_die(FILE *fp);
int explain_getw_on_error(FILE *fp);

DESCRIPTION
Theexplain_getw_or_diefunction is used to call thegetw(3) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_getw(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_getw_on_errorfunction is used to call thegetw(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_getw(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thegetw(3) system call.

RETURN VALUE
The explain_getw_or_diefunction only returns on success, seegetw(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_getw_on_errorfunction always returns the value return by the wrappedgetw(3) system call.

EXAMPLE
Theexplain_getw_or_diefunction is intended to be used in a fashion similar to the following example:

int result = explain_getw_or_die(fp);

SEE ALSO
getw(3) input a word (int)

explain_getw(3)
explaingetw(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

467

explain_iconv(3) explain_iconv(3)

NAME
explain_iconv − explain iconv(3) errors

SYNOPSIS
#include <libexplain/iconv.h>

const char *explain_iconv(iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf, size_t
*outbytesleft);
const char *explain_errno_iconv(int errnum, iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf,
size_t *outbytesleft);
void explain_message_iconv(char *message, int message_size, iconv_t cd, char **inbuf, size_t
*inbytesleft, char **outbuf, size_t *outbytesleft);
void explain_message_errno_iconv(char *message, int message_size, int errnum, iconv_t cd, char **inbuf,
size_t *inbytesleft, char **outbuf, size_t *outbytesleft);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theiconv(3) system call.

explain_iconv
const char *explain_iconv(iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf, size_t
*outbytesleft);

The explain_iconv function is used to obtain an explanation of an error returned by theiconv(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

cd The original cd, exactly as passed to theiconv(3) system call.

inbuf The original inbuf, exactly as passed to theiconv(3) system call.

inbytesleft
The original inbytesleft, exactly as passed to theiconv(3) system call.

outbuf The original outbuf, exactly as passed to theiconv(3) system call.

outbytesleft
The original outbytesleft, exactly as passed to theiconv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
size_t result = iconv(cd, inbuf, inbytesleft, outbuf,
outbytesleft);
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_iconv(cd, inbuf, inbytesleft,
outbuf, outbytesleft));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_or_die(3) function.

explain_errno_iconv
const char *explain_errno_iconv(int errnum, iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf,
size_t *outbytesleft);

468

explain_iconv(3) explain_iconv(3)

The explain_errno_iconv function is used to obtain an explanation of an error returned by theiconv(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

cd The original cd, exactly as passed to theiconv(3) system call.

inbuf The original inbuf, exactly as passed to theiconv(3) system call.

inbytesleft
The original inbytesleft, exactly as passed to theiconv(3) system call.

outbuf The original outbuf, exactly as passed to theiconv(3) system call.

outbytesleft
The original outbytesleft, exactly as passed to theiconv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
size_t result = iconv(cd, inbuf, inbytesleft, outbuf,
outbytesleft);
if (result < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_iconv(err, cd, inbuf,
inbytesleft, outbuf, outbytesleft));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_or_die(3) function.

explain_message_iconv
void explain_message_iconv(char *message, int message_size, iconv_t cd, char **inbuf, size_t
*inbytesleft, char **outbuf, size_t *outbytesleft);

Theexplain_message_iconvfunction is used to obtain an explanation of an error returned by theiconv(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

cd The original cd, exactly as passed to theiconv(3) system call.

inbuf The original inbuf, exactly as passed to theiconv(3) system call.

inbytesleft
The original inbytesleft, exactly as passed to theiconv(3) system call.

outbuf The original outbuf, exactly as passed to theiconv(3) system call.

469

explain_iconv(3) explain_iconv(3)

outbytesleft
The original outbytesleft, exactly as passed to theiconv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
size_t result = iconv(cd, inbuf, inbytesleft, outbuf,
outbytesleft);
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_iconv(message, sizeof(message), cd, inbuf,
inbytesleft, outbuf, outbytesleft);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_or_die(3) function.

explain_message_errno_iconv
void explain_message_errno_iconv(char *message, int message_size, int errnum, iconv_t cd, char **inbuf,
size_t *inbytesleft, char **outbuf, size_t *outbytesleft);

The explain_message_errno_iconvfunction is used to obtain an explanation of an error returned by the
iconv(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

cd The original cd, exactly as passed to theiconv(3) system call.

inbuf The original inbuf, exactly as passed to theiconv(3) system call.

inbytesleft
The original inbytesleft, exactly as passed to theiconv(3) system call.

outbuf The original outbuf, exactly as passed to theiconv(3) system call.

outbytesleft
The original outbytesleft, exactly as passed to theiconv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
size_t result = iconv(cd, inbuf, inbytesleft, outbuf,
outbytesleft);
if (result < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_iconv(message, sizeof(message), err, cd,
inbuf, inbytesleft, outbuf, outbytesleft);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_or_die(3) function.

470

explain_iconv(3) explain_iconv(3)

SEE ALSO
iconv(3) perform character set conversion

explain_iconv_or_die(3)
perform character set conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

471

explain_iconv_close(3) explain_iconv_close(3)

NAME
explain_iconv_close − explainiconv_close(3) errors

SYNOPSIS
#include <libexplain/iconv_close.h>

const char *explain_iconv_close(iconv_t cd);
const char *explain_errno_iconv_close(int errnum, iconv_t cd);
void explain_message_iconv_close(char *message, int message_size, iconv_t cd);
void explain_message_errno_iconv_close(char *message, int message_size, int errnum, iconv_t cd);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theiconv_close(3) system call.

explain_iconv_close
const char *explain_iconv_close(iconv_t cd);

The explain_iconv_close function is used to obtain an explanation of an error returned by the
iconv_close(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

cd The original cd, exactly as passed to theiconv_close(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (iconv_close(cd) < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_iconv_close(cd));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_close_or_die(3) function.

explain_errno_iconv_close
const char *explain_errno_iconv_close(int errnum, iconv_t cd);

The explain_errno_iconv_closefunction is used to obtain an explanation of an error returned by the
iconv_close(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

cd The original cd, exactly as passed to theiconv_close(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;

472

explain_iconv_close(3) explain_iconv_close(3)

if (iconv_close(cd) < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_iconv_close(err, cd));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_close_or_die(3) function.

explain_message_iconv_close
void explain_message_iconv_close(char *message, int message_size, iconv_t cd);

The explain_message_iconv_closefunction is used to obtain an explanation of an error returned by the
iconv_close(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

cd The original cd, exactly as passed to theiconv_close(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (iconv_close(cd) < 0 && errno != 0)
{

char message[3000];
explain_message_iconv_close(message, sizeof(message), cd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_close_or_die(3) function.

explain_message_errno_iconv_close
void explain_message_errno_iconv_close(char *message, int message_size, int errnum, iconv_t cd);

Theexplain_message_errno_iconv_closefunction is used to obtain an explanation of an error returned by
the iconv_close(3) system call.The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

cd The original cd, exactly as passed to theiconv_close(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
if (iconv_close(cd) < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_iconv_close(message, sizeof(message),

473

explain_iconv_close(3) explain_iconv_close(3)

err, cd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_close_or_die(3) function.

SEE ALSO
iconv_close(3)

deallocate descriptor for character set conversion

explain_iconv_close_or_die(3)
deallocate descriptor for character set conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

474

explain_iconv_close_or_die(3) explain_iconv_close_or_die(3)

NAME
explain_iconv_close_or_die − deallocate conversion descriptor and report errors

SYNOPSIS
#include <libexplain/iconv_close.h>

void explain_iconv_close_or_die(iconv_t cd);
int explain_iconv_close_on_error(iconv_t cd);

DESCRIPTION
The explain_iconv_close_or_diefunction is used to call theiconv_close(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_iconv_close(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_iconv_close_on_errorfunction is used to call theiconv_close(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_iconv_close(3) function, but still returns to
the caller.

cd The cd, exactly as to be passed to theiconv_close(3) system call.

RETURN VALUE
The explain_iconv_close_or_die function only returns on success, seeiconv_close(3) for more
information. On failure, prints an explanation and exits, it does not return.

Theexplain_iconv_close_on_errorfunction always returns the value return by the wrappediconv_close(3)
system call.

EXAMPLE
The explain_iconv_close_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_iconv_close_or_die(cd);

SEE ALSO
iconv_close(3)

deallocate descriptor for character set conversion

explain_iconv_close(3)
explain iconv_close(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

475

explain_iconv_open(3) explain_iconv_open(3)

NAME
explain_iconv_open − explainiconv_open(3) errors

SYNOPSIS
#include <libexplain/iconv_open.h>

const char *explain_iconv_open(const char *tocode, const char *fromcode);
const char *explain_errno_iconv_open(int errnum, const char *tocode, const char *fromcode);
void explain_message_iconv_open(char *message, int message_size, const char *tocode, const char
*fromcode);
void explain_message_errno_iconv_open(char *message, int message_size, int errnum, const char *tocode,
const char *fromcode);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theiconv_open(3) system call.

explain_iconv_open
const char *explain_iconv_open(const char *tocode, const char *fromcode);

The explain_iconv_open function is used to obtain an explanation of an error returned by the
iconv_open(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

tocode The original tocode, exactly as passed to theiconv_open(3) system call.

fromcode
The original fromcode, exactly as passed to theiconv_open(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
iconv_t result = iconv_open(tocode, fromcode);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_iconv_open(tocode, fromcode));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_open_or_die(3) function.

explain_errno_iconv_open
const char *explain_errno_iconv_open(int errnum, const char *tocode, const char *fromcode);

The explain_errno_iconv_openfunction is used to obtain an explanation of an error returned by the
iconv_open(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

tocode The original tocode, exactly as passed to theiconv_open(3) system call.

fromcode
The original fromcode, exactly as passed to theiconv_open(3) system call.

476

explain_iconv_open(3) explain_iconv_open(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
iconv_t result = iconv_open(tocode, fromcode);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_iconv_open(err, tocode,
fromcode));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_open_or_die(3) function.

explain_message_iconv_open
void explain_message_iconv_open(char *message, int message_size, const char *tocode, const char
*fromcode);

The explain_message_iconv_openfunction is used to obtain an explanation of an error returned by the
iconv_open(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

tocode The original tocode, exactly as passed to theiconv_open(3) system call.

fromcode
The original fromcode, exactly as passed to theiconv_open(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
iconv_t result = iconv_open(tocode, fromcode);
if (result < 0)
{

char message[3000];
explain_message_iconv_open(message, sizeof(message), tocode,
fromcode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_open_or_die(3) function.

explain_message_errno_iconv_open
void explain_message_errno_iconv_open(char *message, int message_size, int errnum, const char *tocode,
const char *fromcode);

Theexplain_message_errno_iconv_openfunction is used to obtain an explanation of an error returned by
the iconv_open(3) system call.The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

477

explain_iconv_open(3) explain_iconv_open(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

tocode The original tocode, exactly as passed to theiconv_open(3) system call.

fromcode
The original fromcode, exactly as passed to theiconv_open(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
iconv_t result = iconv_open(tocode, fromcode);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_iconv_open(message, sizeof(message),
err, tocode, fromcode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_iconv_open_or_die(3) function.

SEE ALSO
iconv_open(3)

allocate descriptor for character set conversion

explain_iconv_open_or_die(3)
allocate descriptor for character set conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

478

explain_iconv_open_or_die(3) explain_iconv_open_or_die(3)

NAME
explain_iconv_open_or_die − prepare for charset conversion and report errors

SYNOPSIS
#include <libexplain/iconv_open.h>

iconv_t explain_iconv_open_or_die(const char *tocode, const char *fromcode);
iconv_t explain_iconv_open_on_error(const char *tocode, const char *fromcode);

DESCRIPTION
The explain_iconv_open_or_diefunction is used to call theiconv_open(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_iconv_open(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_iconv_open_on_errorfunction is used to call theiconv_open(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_iconv_open(3) function, but still returns to
the caller.

tocode The tocode, exactly as to be passed to theiconv_open(3) system call.

fromcode
The fromcode, exactly as to be passed to theiconv_open(3) system call.

RETURN VALUE
The explain_iconv_open_or_die function only returns on success, seeiconv_open(3) for more
information. On failure, prints an explanation and exits, it does not return.

Theexplain_iconv_open_on_errorfunction always returns the value return by the wrappediconv_open(3)
system call.

EXAMPLE
The explain_iconv_open_or_diefunction is intended to be used in a fashion similar to the following
example:

iconv_t result = explain_iconv_open_or_die(tocode, fromcode);

SEE ALSO
iconv_open(3)

allocate descriptor for character set conversion

explain_iconv_open(3)
explain iconv_open(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

479

explain_iconv_or_die(3) explain_iconv_or_die(3)

NAME
explain_iconv_or_die − perform character set conversion and report errors

SYNOPSIS
#include <libexplain/iconv.h>

size_t explain_iconv_or_die(iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf, size_t
*outbytesleft);
size_t explain_iconv_on_error(iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf, size_t
*outbytesleft);

DESCRIPTION
Theexplain_iconv_or_diefunction is used to call theiconv(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_iconv(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_iconv_on_error function is used to call theiconv(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_iconv(3) function, but still returns to the caller.

cd The cd, exactly as to be passed to theiconv(3) system call.

inbuf The inbuf, exactly as to be passed to theiconv(3) system call.

inbytesleft
The inbytesleft, exactly as to be passed to theiconv(3) system call.

outbuf The outbuf, exactly as to be passed to theiconv(3) system call.

outbytesleft
The outbytesleft, exactly as to be passed to theiconv(3) system call.

RETURN VALUE
Theexplain_iconv_or_diefunction only returns on success, seeiconv(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_iconv_on_errorfunction always returns the value return by the wrappediconv(3) system call.

EXAMPLE
Theexplain_iconv_or_diefunction is intended to be used in a fashion similar to the following example:

size_t result = explain_iconv_or_die(cd, inbuf, inbytesleft, outbuf,
outbytesleft);

SEE ALSO
iconv(3) perform character set conversion

explain_iconv(3)
explain iconv(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

480

explain_ioctl(3) explain_ioctl(3)

NAME
explain_ioctl − explain ioctl(2) errors

SYNOPSIS
#include <libexplain/ioctl.h>

const char *explain_ioctl(int fildes, int request, void *data);
const char *explain_errno_ioctl(int errnum, int fildes, int request, void *data);
void explain_message_ioctl(char *message, int message_size, int fildes, int request, void *data);
void explain_message_errno_ioctl(char *message, int message_size, int errnum, int fildes, int request, void
*data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theioctl(2) system call.

explain_ioctl
const char *explain_ioctl(int fildes, int request, void *data);

Theexplain_ioctl function is used to obtain an explanation of an error returned by theioctl(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int result = ioctl(fildes, request, data);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_ioctl(fildes, request, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ioctl_or_die(3) function.

fildes The original fildes, exactly as passed to theioctl(2) system call.

request The original request, exactly as passed to theioctl(2) system call.

data The original data, exactly as passed to theioctl(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_ioctl
const char *explain_errno_ioctl(int errnum, int fildes, int request, void *data);

The explain_errno_ioctl function is used to obtain an explanation of an error returned by theioctl(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ioctl(fildes, request, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n",

explain_errno_ioctl(err, fildes, request, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ioctl_or_die(3) function.

481

explain_ioctl(3) explain_ioctl(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theioctl(2) system call.

request The original request, exactly as passed to theioctl(2) system call.

data The original data, exactly as passed to theioctl(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_ioctl
void explain_message_ioctl(char *message, int message_size, int fildes, int request, void *data);

The explain_message_ioctlfunction may be used to obtain an explanation of an error returned by the
ioctl(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (ioctl(fildes, request, data) < 0)
{

char message[3000];
explain_message_ioctl(message, sizeof(message), fildes, request, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ioctl_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theioctl(2) system call.

request The original request, exactly as passed to theioctl(2) system call.

data The original data, exactly as passed to theioctl(2) system call.

explain_message_errno_ioctl
void explain_message_errno_ioctl(char *message, int message_size, int errnum, int fildes, int request, void
*data);

The explain_message_errno_ioctlfunction may be used to obtain an explanation of an error returned by
the ioctl(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (ioctl(fildes, request, data) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_ioctl(message, sizeof(message), err,

fildes, request, data);
fprintf(stderr, "%s\n", message);

482

explain_ioctl(3) explain_ioctl(3)

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_ioctl_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theioctl(2) system call.

request The original request, exactly as passed to theioctl(2) system call.

data The original data, exactly as passed to theioctl(2) system call.

SEE ALSO
ioctl(2) control device

explain_ioctl_or_die(3)
control device and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

483

explain_ioctl_or_die(3) explain_ioctl_or_die(3)

NAME
explain_ioctl_or_die − control device and report errors

SYNOPSIS
#include <libexplain/ioctl.h>

int explain_ioctl_or_die(int fildes, int request, void *data);

DESCRIPTION
Theexplain_ioctl_or_die function is used to call theioctl(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_ioctl(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int result = explain_ioctl_or_die(fildes, request, data);

fildes The fildes, exactly as to be passed to theioctl(2) system call.

request The request, exactly as to be passed to theioctl(2) system call.

data The data, exactly as to be passed to theioctl(2) system call.

Returns: This function only returns on success, seeioctl(2) for more information. On failure, prints an
explanation and exit()s.

SEE ALSO
ioctl(2) control device

explain_ioctl(3)
explain ioctl(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

484

explain_kill(3) explain_kill(3)

NAME
explain_kill − explain kill(2) errors

SYNOPSIS
#include <libexplain/kill.h>

const char *explain_kill(pid_t pid, int sig);
const char *explain_errno_kill(int errnum, pid_t pid, int sig);
void explain_message_kill(char *message, int message_size, pid_t pid, int sig);
void explain_message_errno_kill(char *message, int message_size, int errnum, pid_t pid, int sig);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thekill (2) system call.

explain_kill
const char *explain_kill(pid_t pid, int sig);

The explain_kill function is used to obtain an explanation of an error returned by thekill (2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pid The original pid, exactly as passed to thekill (2) system call.

sig The original sig, exactly as passed to thekill (2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (kill(pid, sig) < 0)
{

fprintf(stderr, "%s\n", explain_kill(pid, sig));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_kill_or_die(3) function.

explain_errno_kill
const char *explain_errno_kill(int errnum, pid_t pid, int sig);

Theexplain_errno_kill function is used to obtain an explanation of an error returned by thekill (2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thekill (2) system call.

sig The original sig, exactly as passed to thekill (2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

485

explain_kill(3) explain_kill(3)

if (kill(pid, sig) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_kill(err, pid, sig));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_kill_or_die(3) function.

explain_message_kill
void explain_message_kill(char *message, int message_size, pid_t pid, int sig);

The explain_message_killfunction is used to obtain an explanation of an error returned by thekill (2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to thekill (2) system call.

sig The original sig, exactly as passed to thekill (2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (kill(pid, sig) < 0)
{

char message[3000];
explain_message_kill(message, sizeof(message), pid, sig);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_kill_or_die(3) function.

explain_message_errno_kill
void explain_message_errno_kill(char *message, int message_size, int errnum, pid_t pid, int sig);

The explain_message_errno_killfunction is used to obtain an explanation of an error returned by the
kill (2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thekill (2) system call.

sig The original sig, exactly as passed to thekill (2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (kill(pid, sig) < 0)
{

int err = errno;
char message[3000];

486

explain_kill(3) explain_kill(3)

explain_message_errno_kill(message, sizeof(message), err, pid,
sig);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_kill_or_die(3) function.

SEE ALSO
kill (2) send signal to a process

explain_kill_or_die(3)
send signal to a process and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

487

explain_kill_or_die(3) explain_kill_or_die(3)

NAME
explain_kill_or_die − send signal to a process and report errors

SYNOPSIS
#include <libexplain/kill.h>

void explain_kill_or_die(pid_t pid, int sig);
int explain_kill_on_error(pid_t pid, int sig);

DESCRIPTION
The explain_kill_or_die function is used to call thekill (2) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_kill(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_kill_on_error function is used to call thekill (2) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_kill(3) function, but still returns to the caller.

pid The pid, exactly as to be passed to thekill (2) system call.

sig The sig, exactly as to be passed to thekill (2) system call.

RETURN VALUE
The explain_kill_or_die function only returns on success, seekill (2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_kill_on_error function always returns the value return by the wrappedkill (2) system call.

EXAMPLE
Theexplain_kill_or_die function is intended to be used in a fashion similar to the following example:

explain_kill_or_die(pid, sig);

SEE ALSO
kill (2) send signal to a process

explain_kill(3)
explainkill (2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

488

explain_lchmod(3) explain_lchmod(3)

NAME
explain_lchmod − explainlchmod(2) errors

SYNOPSIS
#include <libexplain/lchmod.h>

const char *explain_lchmod(const char *pathname, mode_t mode);
const char *explain_errno_lchmod(int errnum, const char *pathname, mode_t mode);
void explain_message_lchmod(char *message, int message_size, const char *pathname, mode_t mode);
void explain_message_errno_lchmod(char *message, int message_size, int errnum, const char *pathname,
mode_t mode);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thelchmod(2) system call.

explain_lchmod
const char *explain_lchmod(const char *pathname, mode_t mode);

Theexplain_lchmodfunction is used to obtain an explanation of an error returned by thelchmod(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to thelchmod(2) system call.

mode The original mode, exactly as passed to thelchmod(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (lchmod(pathname, mode) < 0)
{

fprintf(stderr, "%s\n", explain_lchmod(pathname, mode));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lchmod_or_die(3) function.

explain_errno_lchmod
const char *explain_errno_lchmod(int errnum, const char *pathname, mode_t mode);

Theexplain_errno_lchmod function is used to obtain an explanation of an error returned by thelchmod(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thelchmod(2) system call.

mode The original mode, exactly as passed to thelchmod(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

489

explain_lchmod(3) explain_lchmod(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (lchmod(pathname, mode) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_lchmod(err, pathname,
mode));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lchmod_or_die(3) function.

explain_message_lchmod
void explain_message_lchmod(char *message, int message_size, const char *pathname, mode_t mode);

The explain_message_lchmodfunction is used to obtain an explanation of an error returned by the
lchmod(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thelchmod(2) system call.

mode The original mode, exactly as passed to thelchmod(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (lchmod(pathname, mode) < 0)
{

char message[3000];
explain_message_lchmod(message, sizeof(message), pathname,
mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lchmod_or_die(3) function.

explain_message_errno_lchmod
void explain_message_errno_lchmod(char *message, int message_size, int errnum, const char *pathname,
mode_t mode);

Theexplain_message_errno_lchmodfunction is used to obtain an explanation of an error returned by the
lchmod(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

490

explain_lchmod(3) explain_lchmod(3)

pathname
The original pathname, exactly as passed to thelchmod(2) system call.

mode The original mode, exactly as passed to thelchmod(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (lchmod(pathname, mode) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_lchmod(message, sizeof(message), err,
pathname, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lchmod_or_die(3) function.

SEE ALSO
lchmod(2)

change permissions of a file

explain_lchmod_or_die(3)
change permissions of a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

491

explain_lchmod_or_die(3) explain_lchmod_or_die(3)

NAME
explain_lchmod_or_die − change permissions of a file and report errors

SYNOPSIS
#include <libexplain/lchmod.h>

void explain_lchmod_or_die(const char *pathname, mode_t mode);
int explain_lchmod_on_error(const char *pathname, mode_t mode);

DESCRIPTION
The explain_lchmod_or_diefunction is used to call thelchmod(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_lchmod(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_lchmod_on_error function is used to call thelchmod(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_lchmod(3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed to thelchmod(2) system call.

mode The mode, exactly as to be passed to thelchmod(2) system call.

RETURN VALUE
The explain_lchmod_or_die function only returns on success, seelchmod(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_lchmod_on_error function always returns the value return by the wrappedlchmod(2) system
call.

EXAMPLE
Theexplain_lchmod_or_diefunction is intended to be used in a fashion similar to the following example:

explain_lchmod_or_die(pathname, mode);

SEE ALSO
lchmod(2)

change permissions of a file

explain_lchmod(3)
explain lchmod(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

492

explain_lchown(3) explain_lchown(3)

NAME
explain_lchown − explain lchown(2) errors

SYNOPSIS
#include <libexplain/lchown.h>

const char *explain_lchown(const char *pathname, int owner, int group);
const char *explain_errno_lchown(int errnum, const char *pathname, int owner, int group);
void explain_message_lchown(char *message, int message_size, const char *pathname, int owner, int
group);
void explain_message_errno_lchown(char *message, int message_size, int errnum, const char *pathname,
int owner, int group);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thelchown(2) system call.

explain_lchown
const char *explain_lchown(const char *pathname, int owner, int group);

Theexplain_lchown function is used to obtain an explanation of an error returned by thelchown(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (lchown(pathname, owner, group) < 0)
{

fprintf(stderr, "%s\n", explain_lchown(pathname, owner, group));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thelchown(2) system call.

owner The original owner, exactly as passed to thelchown(2) system call.

group The original group, exactly as passed to thelchown(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_lchown
const char *explain_errno_lchown(int errnum, const char *pathname, int owner, int group);

Theexplain_errno_lchown function is used to obtain an explanation of an error returned by thelchown(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (lchown(pathname, owner, group) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_lchown(err,

pathname, owner, group));
exit(EXIT_FAILURE);

}

493

explain_lchown(3) explain_lchown(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thelchown(2) system call.

owner The original owner, exactly as passed to thelchown(2) system call.

group The original group, exactly as passed to thelchown(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_lchown
void explain_message_lchown(char *message, int message_size, const char *pathname, int owner, int
group);

The explain_message_lchownfunction may be used to obtain an explanation of an error returned by the
lchown(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (lchown(pathname, owner, group) < 0)
{

char message[3000];
explain_message_lchown(message, sizeof(message),

pathname, owner, group);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thelchown(2) system call.

owner The original owner, exactly as passed to thelchown(2) system call.

group The original group, exactly as passed to thelchown(2) system call.

explain_message_errno_lchown
void explain_message_errno_lchown(char *message, int message_size, int errnum, const char *pathname,
int owner, int group);

The explain_message_errno_lchownfunction may be used to obtain an explanation of an error returned
by the lchown(2) system call.The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (lchown(pathname, owner, group) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_lchown(message, sizeof(message), err,

494

explain_lchown(3) explain_lchown(3)

pathname, owner, group);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thelchown(2) system call.

owner The original owner, exactly as passed to thelchown(2) system call.

group The original group, exactly as passed to thelchown(2) system call.

SEE ALSO
lchown(2)

change ownership of a file

explain_lchown_or_die(3)
change ownership of a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

495

explain_lchownat(3) explain_lchownat(3)

NAME
explain_lchownat − explainlchownat(2) errors

SYNOPSIS
#include <libexplain/lchownat.h>

const char *explain_lchownat(int fildes, const char *pathname, int uid, int gid);
const char *explain_errno_lchownat(int errnum, int fildes, const char *pathname, int uid, int gid);
void explain_message_lchownat(char *message, int message_size, int fildes, const char *pathname, int uid,
int gid);
void explain_message_errno_lchownat(char *message, int message_size, int errnum, int fildes, const char
*pathname, int uid, int gid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thelchownat(2) system call.

explain_lchownat
const char *explain_lchownat(int fildes, const char *pathname, int uid, int gid);

The explain_lchownat function is used to obtain an explanation of an error returned by thelchownat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thelchownat(2) system call.

pathname
The original pathname, exactly as passed to thelchownat(2) system call.

uid The original uid, exactly as passed to thelchownat(2) system call.

gid The original gid, exactly as passed to thelchownat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (lchownat(fildes, pathname, uid, gid) < 0)
{

fprintf(stderr, "%s\n", explain_lchownat(fildes, pathname,
uid, gid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lchownat_or_die(3) function.

explain_errno_lchownat
const char *explain_errno_lchownat(int errnum, int fildes, const char *pathname, int uid, int gid);

The explain_errno_lchownat function is used to obtain an explanation of an error returned by the
lchownat(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thelchownat(2) system call.

496

explain_lchownat(3) explain_lchownat(3)

pathname
The original pathname, exactly as passed to thelchownat(2) system call.

uid The original uid, exactly as passed to thelchownat(2) system call.

gid The original gid, exactly as passed to thelchownat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (lchownat(fildes, pathname, uid, gid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_lchownat(err, fildes,
pathname, uid, gid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lchownat_or_die(3) function.

explain_message_lchownat
void explain_message_lchownat(char *message, int message_size, int fildes, const char *pathname, int uid,
int gid);

The explain_message_lchownatfunction is used to obtain an explanation of an error returned by the
lchownat(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thelchownat(2) system call.

pathname
The original pathname, exactly as passed to thelchownat(2) system call.

uid The original uid, exactly as passed to thelchownat(2) system call.

gid The original gid, exactly as passed to thelchownat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (lchownat(fildes, pathname, uid, gid) < 0)
{

char message[3000];
explain_message_lchownat(message, sizeof(message), fildes,
pathname, uid, gid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lchownat_or_die(3) function.

explain_message_errno_lchownat
void explain_message_errno_lchownat(char *message, int message_size, int errnum, int fildes, const char
*pathname, int uid, int gid);

497

explain_lchownat(3) explain_lchownat(3)

The explain_message_errno_lchownatfunction is used to obtain an explanation of an error returned by
the lchownat(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thelchownat(2) system call.

pathname
The original pathname, exactly as passed to thelchownat(2) system call.

uid The original uid, exactly as passed to thelchownat(2) system call.

gid The original gid, exactly as passed to thelchownat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (lchownat(fildes, pathname, uid, gid) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_lchownat(message, sizeof(message), err,
fildes, pathname, uid, gid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lchownat_or_die(3) function.

SEE ALSO
lchownat(2)

Executelchownat(2)

explain_lchownat_or_die(3)
Executelchownat(2) and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

498

explain_lchownat_or_die(3) explain_lchownat_or_die(3)

NAME
explain_lchownat_or_die − Executelchownat(2) and report errors

SYNOPSIS
#include <libexplain/lchownat.h>

void explain_lchownat_or_die(int fildes, const char *pathname, int uid, int gid);
int explain_lchownat_on_error(int fildes, const char *pathname, int uid, int gid);

DESCRIPTION
The explain_lchownat_or_die function is used to call thelchownat(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_lchownat(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_lchownat_on_error function is used to call thelchownat(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_lchownat(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thelchownat(2) system call.

pathname
The pathname, exactly as to be passed to thelchownat(2) system call.

uid The uid, exactly as to be passed to thelchownat(2) system call.

gid The gid, exactly as to be passed to thelchownat(2) system call.

RETURN VALUE
Theexplain_lchownat_or_diefunction only returns on success, seelchownat(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_lchownat_on_error function always returns the value return by the wrappedlchownat(2)
system call.

EXAMPLE
The explain_lchownat_or_die function is intended to be used in a fashion similar to the following
example:

explain_lchownat_or_die(fildes, pathname, uid, gid);

SEE ALSO
lchownat(2)

Executelchownat(2)

explain_lchownat(3)
explain lchownat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

499

explain_lchown_or_die(3) explain_lchown_or_die(3)

NAME
explain_lchown_or_die − change ownership of a file and report errors

SYNOPSIS
#include <libexplain/lchown.h>

void explain_lchown_or_die(const char *pathname, int owner, int group);

DESCRIPTION
The explain_lchown_or_diefunction is used to call thelchown(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_lchown(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_lchown_or_die(pathname, owner, group);

pathname
The pathname, exactly as to be passed to thelchown(2) system call.

owner The owner, exactly as to be passed to thelchown(2) system call.

group The group, exactly as to be passed to thelchown(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
lchown(2)

change ownership of a file

explain_lchown(3)
explain lchown(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

500

LGPL(3) FreeSoftware Foundation LGPL(3)

NAME
LGPG − GNU Lesser General Public License

DESCRIPTION
GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3
of the GNU General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU
GPL" refers to version 3 of the GNU General Public License.

"The Library" refers to a covered work governed by this License, other than an Application or a Combined
Work as defined below.

An "Application" is any work that makes use of an interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of
using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an Application with the Library. The
particular version of the Library with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the
Combined Work, excluding any source code for portions of the Combined Work that, considered in
isolation, are based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the object code and/or source code for
the Application, including any data and utility programs needed for reproducing the Combined Work from
the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of
the GNU GPL.

2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be
supplied by an Application that uses the facility (other than as an argument passed when the facility is
invoked), then you may convey a copy of the modified version:

a) under this License, provided that you make a good faith effort to ensure that, in the event an
Application does not supply the function or data, the facility still operates, and performs whatever
part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of this License applicable to that
copy.

3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from a header file that is part of the
Library. You may convey such object code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline
functions and templates (ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the Library is used in it and that the
Library and its use are covered by this License.

GNU LGPL 501

LGPL(3) FreeSoftware Foundation LGPL(3)

b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.
You may convey a Combined Work under terms of your choice that, taken together, effectively do not
restrict modification of the portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and
that the Library and its use are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright
notice for the Library among these notices, as well as a reference directing the user to the copies
of the GNU GPL and this license document.

d)
Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the
Corresponding Application Code in a form suitable for, and under terms that permit,
the user to recombine or relink the Application with a modified version of the Linked
Version to produce a modified Combined Work, in the manner specified by section 6 of
the GNU GPL for conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (a) uses at run time a copy of the Library already present on the
user’s computer system, and (b) will operate properly with a modified version of the
Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such
information under section 6 of the GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the Combined Work produced by
recombining or relinking the Application with a modified version of the Linked Version. (If you
use option 4d0, the Installation Information must accompany the Minimal Corresponding Source
and Corresponding Application Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding
Source.)

5. Combined Libraries.
You may place library facilities that are a work based on the Library side by side in a single library together
with other library facilities that are not Applications and are not covered by this License, and convey such a
combined library under terms of your choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities, conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a
certain numbered version of the GNU Lesser General Public License "or any later version" applies to it,
you have the option of following the terms and conditions either of that published version or of any later
version published by the Free Software Foundation. If the Library as you received it does not specify a
version number of the GNU Lesser General Public License, you may choose any version of the GNU
Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU

GNU LGPL 502

LGPL(3) FreeSoftware Foundation LGPL(3)

Lesser General Public License shall apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the Library.

GNU LGPL 503

explain_link(3) explain_link(3)

NAME
explain_link − explain link(2) errors

SYNOPSIS
#include <libexplain/link.h>

const char *explain_link(const char *oldpath, const char *newpath);
const char *explain_errno_link(int errnum, const char *oldpath, const char *newpath);
void explain_message_link(char *message, int message_size, const char *oldpath, const char *newpath);
void explain_message_errno_link(char *message, int message_size, int errnum, const char *oldpath, const
char *newpath);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thelink(2) system call.

explain_link
const char *explain_link(const char *oldpath, const char *newpath);

The explain_link function is used to obtain an explanation of an error returned by thelink(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (link(oldpath, newpath) < 0)
{

fprintf(stderr, "%s\n", explain_link(oldpath, newpath));
exit(EXIT_FAILURE);

}

oldpath The original oldpath, exactly as passed to thelink(2) system call.

newpath The original newpath, exactly as passed to thelink(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_link
const char *explain_errno_link(int errnum, const char *oldpath, const char *newpath);

Theexplain_errno_link function is used to obtain an explanation of an error returned by thelink(2) system
call. Theleast the message will contain is the value ofstrerror(errnum) , but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (link(oldpath, newpath) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_link(err, oldpath, newpath));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

oldpath The original oldpath, exactly as passed to thelink(2) system call.

504

explain_link(3) explain_link(3)

newpath The original newpath, exactly as passed to thelink(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_link
void explain_message_link(char *message, int message_size, const char *oldpath, const char *newpath);

The explain_message_linkfunction may be used to obtain an explanation of an error returned by the
link(2) system call.The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (link(oldpath, newpath) < 0)
{

char message[3000];
explain_message_link(message, sizeof(message), oldpath, newpath);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

oldpath The original oldpath, exactly as passed to thelink(2) system call.

newpath The original newpath, exactly as passed to thelink(2) system call.

explain_message_errno_link
void explain_message_errno_link(char *message, int message_size, int errnum, const char *oldpath, const
char *newpath);

The explain_message_errno_linkfunction may be used to obtain an explanation of an error returned by
the link(2) system call. The least the message will contain is the value of strerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (link(oldpath, newpath) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_link(message, sizeof(message), err,

oldpath, newpath);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be

505

explain_link(3) explain_link(3)

explained and this function, because many libc functions will alter the value oferrno.

oldpath The original oldpath, exactly as passed to thelink(2) system call.

newpath The original newpath, exactly as passed to thelink(2) system call.

SEE ALSO
link(2) make a new name for a file

explain_link_or_die(3)
make a new name for a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

506

explain_linkat(3) explain_linkat(3)

NAME
explain_linkat − explainlinkat(2) errors

SYNOPSIS
#include <libexplain/linkat.h>

const char *explain_linkat(int old_fildes, const char *old_path, int new_fildes, const char *new_path, int
flags);
const char *explain_errno_linkat(int errnum, int old_fildes, const char *old_path, int new_fildes, const char
*new_path, int flags);
void explain_message_linkat(char *message, int message_size, int old_fildes, const char *old_path, int
new_fildes, const char *new_path, int flags);
void explain_message_errno_linkat(char *message, int message_size, int errnum, int old_fildes, const char
*old_path, int new_fildes, const char *new_path, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thelinkat(2) system call.

explain_linkat
const char *explain_linkat(int old_fildes, const char *old_path, int new_fildes, const char *new_path, int
flags);

The explain_linkat function is used to obtain an explanation of an error returned by thelinkat(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

old_fildes
The original old_fildes, exactly as passed to thelinkat(2) system call.

old_path
The original old_path, exactly as passed to thelinkat(2) system call.

new_fildes
The original new_fildes, exactly as passed to thelinkat(2) system call.

new_path
The original new_path, exactly as passed to thelinkat(2) system call.

flags The original flags, exactly as passed to thelinkat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (linkat(old_fildes, old_path, new_fildes, new_path, flags) < 0)
{

fprintf(stderr, "%s\n", explain_linkat(old_fildes, old_path,
new_fildes, new_path, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_linkat_or_die(3) function.

explain_errno_linkat
const char *explain_errno_linkat(int errnum, int old_fildes, const char *old_path, int new_fildes, const char
*new_path, int flags);

The explain_errno_linkat function is used to obtain an explanation of an error returned by thelinkat(2)

507

explain_linkat(3) explain_linkat(3)

system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

old_fildes
The original old_fildes, exactly as passed to thelinkat(2) system call.

old_path
The original old_path, exactly as passed to thelinkat(2) system call.

new_fildes
The original new_fildes, exactly as passed to thelinkat(2) system call.

new_path
The original new_path, exactly as passed to thelinkat(2) system call.

flags The original flags, exactly as passed to thelinkat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (linkat(old_fildes, old_path, new_fildes, new_path, flags) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_linkat(err, old_fildes,
old_path, new_fildes, new_path, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_linkat_or_die(3) function.

explain_message_linkat
void explain_message_linkat(char *message, int message_size, int old_fildes, const char *old_path, int
new_fildes, const char *new_path, int flags);

Theexplain_message_linkatfunction is used to obtain an explanation of an error returned by thelinkat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

old_fildes
The original old_fildes, exactly as passed to thelinkat(2) system call.

old_path
The original old_path, exactly as passed to thelinkat(2) system call.

new_fildes
The original new_fildes, exactly as passed to thelinkat(2) system call.

508

explain_linkat(3) explain_linkat(3)

new_path
The original new_path, exactly as passed to thelinkat(2) system call.

flags The original flags, exactly as passed to thelinkat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (linkat(old_fildes, old_path, new_fildes, new_path, flags) < 0)
{

char message[3000];
explain_message_linkat(message, sizeof(message), old_fildes,
old_path, new_fildes, new_path, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_linkat_or_die(3) function.

explain_message_errno_linkat
void explain_message_errno_linkat(char *message, int message_size, int errnum, int old_fildes, const char
*old_path, int new_fildes, const char *new_path, int flags);

The explain_message_errno_linkatfunction is used to obtain an explanation of an error returned by the
linkat(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

old_fildes
The original old_fildes, exactly as passed to thelinkat(2) system call.

old_path
The original old_path, exactly as passed to thelinkat(2) system call.

new_fildes
The original new_fildes, exactly as passed to thelinkat(2) system call.

new_path
The original new_path, exactly as passed to thelinkat(2) system call.

flags The original flags, exactly as passed to thelinkat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (linkat(old_fildes, old_path, new_fildes, new_path, flags) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_linkat(message, sizeof(message), err,
old_fildes, old_path, new_fildes, new_path, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_linkat_or_die(3) function.

509

explain_linkat(3) explain_linkat(3)

SEE ALSO
linkat(2) create a file link relative to directory file descriptors

explain_linkat_or_die(3)
create a file link relative to directory file descriptors and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

510

explain_linkat_or_die(3) explain_linkat_or_die(3)

NAME
explain_linkat_or_die − link a file relative to directory and report errors

SYNOPSIS
#include <libexplain/linkat.h>

void explain_linkat_or_die(int old_dirfd, const char *old_path, int new_fildes, const char *new_path, int
flags);
int explain_linkat_on_error(int old_dirfd, const char *old_path, int new_fildes, const char *new_path, int
flags);

DESCRIPTION
Theexplain_linkat_or_die function is used to call thelinkat(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_linkat(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_linkat_on_error function is used to call thelinkat(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_linkat(3) function, but still returns to the caller.

old_dirfd
The old_dirfd, exactly as to be passed to thelinkat(2) system call.

old_path
The old_path, exactly as to be passed to thelinkat(2) system call.

new_fildes
The new_fildes, exactly as to be passed to thelinkat(2) system call.

new_path
The new_path, exactly as to be passed to thelinkat(2) system call.

flags The flags, exactly as to be passed to thelinkat(2) system call.

RETURN VALUE
The explain_linkat_or_die function only returns on success, seelinkat(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_linkat_on_error function always returns the value return by the wrappedlinkat(2) system
call.

EXAMPLE
Theexplain_linkat_or_die function is intended to be used in a fashion similar to the following example:

explain_linkat_or_die(old_dirfd, old_path, new_fildes, new_path, flags);

SEE ALSO
linkat(2) create a file link relative to directory file descriptors

explain_linkat(3)
explain linkat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

511

explain_link_or_die(3) explain_link_or_die(3)

NAME
explain_link_or_die − make a new name for a file and report errors

SYNOPSIS
#include <libexplain/link.h>

void explain_link_or_die(const char *oldpath, const char *newpath);

DESCRIPTION
Theexplain_link_or_die function is used to call thelink(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_link(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_link_or_die(oldpath, newpath);

oldpath The oldpath, exactly as to be passed to thelink(2) system call.

newpath The newpath, exactly as to be passed to thelink(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
link(2) make a new name for a file

explain_link(3)
explain link(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

512

explain_listen(3) explain_listen(3)

NAME
explain_listen − explain listen(2) errors

SYNOPSIS
#include <libexplain/listen.h>

const char *explain_listen(int fildes, int backlog);
const char *explain_errno_listen(int errnum, int fildes, int backlog);
void explain_message_listen(char *message, int message_size, int fildes, int backlog);
void explain_message_errno_listen(char *message, int message_size, int errnum, int fildes, int backlog);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thelisten(2) system call.

explain_listen
const char *explain_listen(int fildes, int backlog);

The explain_listen function is used to obtain an explanation of an error returned by thelisten(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (listen(fildes, backlog) < 0)
{

fprintf(stderr, "%s\n", explain_listen(fildes, backlog));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_listen_or_die(3) function.

fildes The original fildes, exactly as passed to thelisten(2) system call.

backlog The original backlog, exactly as passed to thelisten(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_listen
const char *explain_errno_listen(int errnum, int fildes, int backlog);

The explain_errno_listen function is used to obtain an explanation of an error returned by thelisten(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (listen(fildes, backlog) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_listen(err, fildes, backlog));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_listen_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

513

explain_listen(3) explain_listen(3)

fildes The original fildes, exactly as passed to thelisten(2) system call.

backlog The original backlog, exactly as passed to thelisten(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_listen
void explain_message_listen(char *message, int message_size, int fildes, int backlog);

The explain_message_listenfunction may be used toobtain an explanation of an error returned by the
listen(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (listen(fildes, backlog) < 0)
{

char message[3000];
explain_message_listen(message, sizeof(message), fildes, backlog);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_listen_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thelisten(2) system call.

backlog The original backlog, exactly as passed to thelisten(2) system call.

explain_message_errno_listen
void explain_message_errno_listen(char *message, int message_size, int errnum, int fildes, int backlog);

Theexplain_message_errno_listenfunction may be used to obtain an explanation of an error returned by
the listen(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (listen(fildes, backlog) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_listen(message, sizeof(message), err,

fildes, backlog);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_listen_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

514

explain_listen(3) explain_listen(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thelisten(2) system call.

backlog The original backlog, exactly as passed to thelisten(2) system call.

SEE ALSO
listen(2) listen for connections on a socket

explain_listen_or_die(3)
listen for connections on a socket and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

515

explain_listen_or_die(3) explain_listen_or_die(3)

NAME
explain_listen_or_die − listen for connections on a socket and report errors

SYNOPSIS
#include <libexplain/listen.h>

void explain_listen_or_die(int fildes, int backlog);

DESCRIPTION
Theexplain_listen_or_diefunction is used to call thelisten(2) system call. On failure an explanation will
be printed tostderr, obtained from explain_listen(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_listen_or_die(fildes, backlog);

fildes The fildes, exactly as to be passed to thelisten(2) system call.

backlog The backlog, exactly as to be passed to thelisten(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
listen(2) listen for connections on a socket

explain_listen(3)
explain listen(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

516

explain_lseek(3) explain_lseek(3)

NAME
explain_lseek − explain lseek(2) errors

SYNOPSIS
#include <libexplain/lseek.h>
const char *explain_lseek(int fildes, long long offset, int whence);
const char *explain_errno_lseek(int errnum, int fildes, long long offset, int whence);
void explain_message_lseek(char *message, int message_size, int fildes, long long offset, int whence);
void explain_message_errno_lseek(char *message, int message_size, int errnum, int fildes, long long offset,
int whence);

DESCRIPTION
These functions may be used to obtain explanations forlseek(2) errors.

explain_lseek
const char *explain_lseek(int fildes, long long offset, int whence);

The explain_lseek function may be used to obtain a human readable explanation of what went wrong in an
lseek(2) system call.The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (lseek(fd, offset, whence) == (off_t)−1)
{

fprintf(stderr, ’%s0, explain_lseek(fd, offset, whence);
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to thelseek(2) system call.

offset The original offset, exactly as passed to thelseek(2) system call.

whence The original whence, exactly as passed to thelseek(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_lseek
const char *explain_errno_lseek(int errnum, int fildes, long long offset, int whence);

The explain_errno_lseek function may be used to obtain a human readable explanation of what went wrong
in an lseek(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (lseek(fd, offset, whence) == (off_t)−1)
{

int errnum = errno;
fprintf(stderr, ’%s0, explain_errno_lseek(fd, eernum, offset,

whence);
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

517

explain_lseek(3) explain_lseek(3)

fildes The original fildes, exactly as passed to thelseek(2) system call.
offsetThe original offset, exactly as passed to thelseek(2) system call.
whenceThe original whence, exactly as passed to thelseek(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_lseek
void explain_message_lseek(char *message, int message_size, int fildes, long long offset, int whence);

The explain_message_lseek function may be used to obtain a human readable explanation of what went
wrong in anlseek(2) system call.The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (lseek(fd, offset, whence) == (off_t)−1)
{

char message[3000];
explain_message_lseek(message, sizeof(message), fd, offset, whence);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thelseek(2) system call.

offset The original offset, exactly as passed to thelseek(2) system call.

whence The original whence, exactly as passed to thelseek(2) system call.

explain_message_errno_lseek
void explain_message_errno_lseek(char *message, int message_size, int errnum, int fildes, long long offset,
int whence);

The explain_message_errno_lseek function may be used to obtain a human readable explanation of what
went wrong in an lseek(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
if (lseek(fd, offset, whence) == (off_t)−1)
{

char message[3000];
int errnum = errno;
explain_message_errno_lseek(message, sizeof(message), errnum, fd,

offset, whence);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

518

explain_lseek(3) explain_lseek(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thelseek(2) system call.

offset The orginal offset, exactly as passed to thelseek(2) system call.

whence The original whence, exactly as passed to thelseek(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

519

explain_lseek_or_die(3) explain_lseek_or_die(3)

NAME
explain_lseek_or_die − reposition file offset and report errors

SYNOPSIS
#include <libexplain/lseek.h>

long long explain_lseek_or_die(int fildes, long long offset, int whence);

DESCRIPTION
Theexplain_lseek_or_diefunction is used to call thelseek(2) system call. On failure an explanation will
be printed to stderr, obtained from explain_lseek(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
long long result = explain_lseek_or_die(fildes, offset, whence);

fildes The fildes, exactly as to be passed to thelseek(2) system call.

offset The offset, exactly as to be passed to thelseek(2) system call.

whence The whence, exactly as to be passed to thelseek(2) system call.

Returns: On successful, returns the resulting offset location as measured in bytes from the beginning of the
fi le. Onfailure, prints an explanation and exits.

SEE ALSO
lseek(2) reposition file offset

explain_lseek(3)
explain lseek(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

520

explain_lstat(3) explain_lstat(3)

NAME
explain_lstat − explain lstat(3) errors

SYNOPSIS
#include <libexplain/lstat.h>
const char *explain_lstat(const char *pathname, const struct stat *buf);
void explain_message_lstat(char *message, int message_size, const char *pathname, const struct stat *buf);
const char *explain_errno_lstat(int errnum, const char *pathname, const struct stat *buf);
void explain_message_errno_lstat(char *message, int message_size, int errnum, const char *pathname,
const struct stat *buf);

DESCRIPTION
These functions may be used to obtains explanations forlstat(2) errors.

explain_lstat
const char *explain_lstat(const char *pathname, const struct stat *buf);

The explain_lstat function is used to obtain an explanation of an error returned by thelstat(2) function. The
least the message will contain is the value ofstrerror(errno) , but usually it will do much better, and
indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (lstat(pathname, &buf) < 0)
{

fprintf(stderr, ’%s0, explain_lstat(pathname, &buf));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thelstat(2) system call.

buf The original buf, exactly as passed to thelstat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_lstat
"const char *explain_errno_lstat(int errnum, const char *pathname, const struct stat *buf);

The explain_errno_lstat function is used to obtain an explanation of an error returned by thelstat(2)
function. Theleast the message will contain is the value ofstrerror(errnum) , but usually it will do
much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (lstat(pathname, &buf) < 0)
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_lstat(err, pathname, &buf));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

521

explain_lstat(3) explain_lstat(3)

pathname
The original pathname, exactly as passed to thelstat(2) system call.

buf The original buf, exactly as passed to thelstat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_lstat
void explain_message_lstat(char *message, int message_size, const char *pathname, const struct stat *buf);

The explain_message_lstat function is used to obtain an explanation of an error returned by thelstat(2)
function. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (lstat(pathname, &buf) < 0)
{

char message[3000];
explain_message_lstat(message, sizeof(message), pathname, &buf);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thelstat(2) system call.

buf The original buf, exactly as passed to thelstat(2) system call.

explain_message_errno_lstat
void explain_message_errno_lstat(char *message, int message_size, int errnum, const char *pathname,
const struct stat *buf);

The explain_message_errno_lstat function is used to obtain an explanation of an error returned by the
lstat(2) function. The least the message will contain is the value ofstrerror(errnum) , but usually it
will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (lstat(pathname, &buf) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_lstat(message, sizeof(message), err,

pathname, &buf);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

522

explain_lstat(3) explain_lstat(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thelstat(2) system call.

buf The original buf, exactly as passed to thelstat(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

523

explain_lstat_or_die(3) explain_lstat_or_die(3)

NAME
explain_lstat_or_die − get file status and report errors

SYNOPSIS
#include <libexplain/lstat.h>

void explain_lstat_or_die(const char *pathname, struct stat *buf);

DESCRIPTION
Theexplain_lstat_or_diefunction is used to call thelstat(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_lstat(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_lstat_or_die(pathname , buf);

pathname
The pathname, exactly as to be passed to thelstat(2) system call.

buf The buf, exactly as to be passed to thelstat(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
lstat(2) get file status

explain_lstat(3)
explain lstat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

524

explain_lutimes(3) explain_lutimes(3)

NAME
explain_lutimes − explainlutimes(3) errors

SYNOPSIS
#include <libexplain/lutimes.h>

const char *explain_lutimes(const char *pathname, const struct timeval * data);
const char *explain_errno_lutimes(int errnum, const char *pathname, const struct timeval * data);
void explain_message_lutimes(char *message, int message_size, const char *pathname, const struct
timeval * data);
void explain_message_errno_lutimes(char *message, int message_size, int errnum, const char *pathname,
const struct timeval * data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thelutimes(3) system call.

explain_lutimes
const char *explain_lutimes(const char *pathname, const struct timeval * data);

Theexplain_lutimes function is used to obtain an explanation of an error returned by thelutimes(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to thelutimes(3) system call.

data The original data, exactly as passed to thelutimes(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (lutimes(pathname, data) < 0)
{

fprintf(stderr, "%s\n", explain_lutimes(pathname, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lutimes_or_die(3) function.

explain_errno_lutimes
const char *explain_errno_lutimes(int errnum, const char *pathname, const struct timeval * data);

Theexplain_errno_lutimes function is used to obtain an explanation of an error returned by thelutimes(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thelutimes(3) system call.

data The original data, exactly as passed to thelutimes(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

525

explain_lutimes(3) explain_lutimes(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (lutimes(pathname, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_lutimes(err, pathname,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lutimes_or_die(3) function.

explain_message_lutimes
void explain_message_lutimes(char *message, int message_size, const char *pathname, const struct
timeval * data);

The explain_message_lutimesfunction is used to obtain an explanation of an error returned by the
lutimes(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thelutimes(3) system call.

data The original data, exactly as passed to thelutimes(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (lutimes(pathname, data) < 0)
{

char message[3000];
explain_message_lutimes(message, sizeof(message), pathname,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lutimes_or_die(3) function.

explain_message_errno_lutimes
void explain_message_errno_lutimes(char *message, int message_size, int errnum, const char *pathname,
const struct timeval * data);

Theexplain_message_errno_lutimesfunction is used to obtain an explanation of an error returned by the
lutimes(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

526

explain_lutimes(3) explain_lutimes(3)

explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thelutimes(3) system call.

data The original data, exactly as passed to thelutimes(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (lutimes(pathname, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_lutimes(message, sizeof(message), err,
pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_lutimes_or_die(3) function.

SEE ALSO
lutimes(3)

modify file timestamps

explain_lutimes_or_die(3)
modify file timestamps and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

527

explain_lutimes_or_die(3) explain_lutimes_or_die(3)

NAME
explain_lutimes_or_die − modify file timestamps and report errors

SYNOPSIS
#include <libexplain/lutimes.h>

void explain_lutimes_or_die(const char *pathname, const struct timeval * data);
int explain_lutimes_on_error(const char *pathname, const struct timeval * data);

DESCRIPTION
The explain_lutimes_or_diefunction is used to call thelutimes(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_lutimes(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_lutimes_on_error function is used to call thelutimes(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_lutimes(3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed to thelutimes(3) system call.

data The data, exactly as to be passed to thelutimes(3) system call.

RETURN VALUE
The explain_lutimes_or_die function only returns on success, seelutimes(3) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_lutimes_on_error function always returns the value return by the wrappedlutimes(3) system
call.

EXAMPLE
Theexplain_lutimes_or_diefunction is intended to be used in a fashion similar to the following example:

explain_lutimes_or_die(pathname, data);

SEE ALSO
lutimes(3)

modify file timestamps

explain_lutimes(3)
explain lutimes(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

528

explain_malloc(3) explain_malloc(3)

NAME
explain_malloc − explain malloc(3) errors

SYNOPSIS
#include <libexplain/malloc.h>

const char *explain_malloc(size_t size);
const char *explain_errno_malloc(int errnum, size_t size);
void explain_message_malloc(char *message, int message_size, size_t size);
void explain_message_errno_malloc(char *message, int message_size, int errnum, size_t size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themalloc(3) system call.

explain_malloc
const char *explain_malloc(size_t size);

Theexplain_malloc function is used to obtain an explanation of an error returned by themalloc(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (malloc(size) < 0)
{

fprintf(stderr, "%s\n", explain_malloc(size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_malloc_or_die(3) function.

size The original size, exactly as passed to themalloc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_malloc
const char *explain_errno_malloc(int errnum, size_t size);

Theexplain_errno_malloc function is used to obtain an explanation of an error returned by themalloc(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (malloc(size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_malloc(err, size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_malloc_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

size The original size, exactly as passed to themalloc(3) system call.

529

explain_malloc(3) explain_malloc(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_malloc
void explain_message_malloc(char *message, int message_size, size_t size);

The explain_message_mallocfunction may be used to obtain an explanation of an error returned by the
malloc(3) system call.The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (malloc(size) < 0)
{

char message[3000];
explain_message_malloc(message, sizeof(message), size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_malloc_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

size The original size, exactly as passed to themalloc(3) system call.

explain_message_errno_malloc
void explain_message_errno_malloc(char *message, int message_size, int errnum, size_t size);

Theexplain_message_errno_mallocfunction may be used to obtain an explanation of an error returned by
the malloc(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (malloc(size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_malloc(message, sizeof(message), err, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_malloc_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

530

explain_malloc(3) explain_malloc(3)

size The original size, exactly as passed to themalloc(3) system call.

SEE ALSO
malloc(3)

Allocate and free dynamic memory

explain_malloc_or_die(3)
Allocate and free dynamic memory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

531

explain_malloc_or_die(3) explain_malloc_or_die(3)

NAME
explain_malloc_or_die − Allocate and free dynamic memory and report errors

SYNOPSIS
#include <libexplain/malloc.h>

void *explain_malloc_or_die(size_t size);

DESCRIPTION
The explain_malloc_or_diefunction is used to call themalloc(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_malloc(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
void *result = explain_malloc_or_die(size);

size The size, exactly as to be passed to themalloc(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
malloc(3)

Allocate and free dynamic memory

explain_malloc(3)
explainmalloc(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

532

explain_mkdir(3) explain_mkdir(3)

NAME
explain_mkdir − explain mkdir(2) errors

SYNOPSIS
#include <libexplain/mkdir.h>

const char *explain_mkdir(const char *pathname);
const char *explain_errno_mkdir(int errnum, const char *pathname);
void explain_message_mkdir(char *message, int message_size, const char *pathname);
void explain_message_errno_mkdir(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themkdir(2) system call.

explain_mkdir
const char *explain_mkdir(const char *pathname);

The explain_mkdir function is used to obtain an explanation of an error returned by themkdir(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (mkdir(pathname) < 0)
{

fprintf(stderr, "%s\n", explain_mkdir(pathname));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to themkdir(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_mkdir
const char *explain_errno_mkdir(int errnum, const char *pathname);

The explain_errno_mkdir function is used to obtain an explanation of an error returned by themkdir(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (mkdir(pathname) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_mkdir(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to themkdir(2) system call.

533

explain_mkdir(3) explain_mkdir(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_mkdir
void explain_message_mkdir(char *message, int message_size, const char *pathname);

The explain_message_mkdirfunction may be used toobtain an explanation of an error returned by the
mkdir(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (mkdir(pathname) < 0)
{

char message[3000];
explain_message_mkdir(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to themkdir(2) system call.

explain_message_errno_mkdir
void explain_message_errno_mkdir(char *message, int message_size, int errnum, const char *pathname);

Theexplain_message_errno_mkdirfunction may be used to obtain an explanation of an error returned by
the mkdir(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (mkdir(pathname) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_mkdir(message, sizeof(message), err, pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

534

explain_mkdir(3) explain_mkdir(3)

pathname
The original pathname, exactly as passed to themkdir(2) system call.

SEE ALSO
mkdir(2) create a directory

explain_mkdir_or_die(3)
create a directory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

535

explain_mkdir_or_die(3) explain_mkdir_or_die(3)

NAME
explain_mkdir_or_die − create a directory and report errors

SYNOPSIS
#include <libexplain/mkdir.h>

void explain_mkdir_or_die(const char *pathname);

DESCRIPTION
The explain_mkdir_or_die function is used to call themkdir(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_mkdir(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_mkdir_or_die(pathname);

pathname
The pathname, exactly as to be passed to themkdir(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
mkdir(2) create a directory

explain_mkdir(3)
explainmkdir(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

536

explain_mkdtemp(3) explain_mkdtemp(3)

NAME
explain_mkdtemp − explainmkdtemp(3) errors

SYNOPSIS
#include <libexplain/mkdtemp.h>

const char *explain_mkdtemp(char *pathname);
const char *explain_errno_mkdtemp(int errnum, char *pathname);
void explain_message_mkdtemp(char *message, int message_size, char *pathname);
void explain_message_errno_mkdtemp(char *message, int message_size, int errnum, char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themkdtemp(3) system call.

explain_mkdtemp
const char *explain_mkdtemp(char *pathname);

The explain_mkdtemp function is used to obtain an explanation of an error returned by themkdtemp(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to themkdtemp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = mkdtemp(pathname);
if (!result)
{

fprintf(stderr, "%s\n", explain_mkdtemp(pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkdtemp_or_die(3) function.

explain_errno_mkdtemp
const char *explain_errno_mkdtemp(int errnum, char *pathname);

The explain_errno_mkdtemp function is used to obtain an explanation of an error returned by the
mkdtemp(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to themkdtemp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

537

explain_mkdtemp(3) explain_mkdtemp(3)

Example: This function is intended to be used in a fashion similar to the following example:
char *result = mkdtemp(pathname);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_mkdtemp(err, pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkdtemp_or_die(3) function.

explain_message_mkdtemp
void explain_message_mkdtemp(char *message, int message_size, char *pathname);

The explain_message_mkdtempfunction is used to obtain an explanation of an error returned by the
mkdtemp(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to themkdtemp(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = mkdtemp(pathname);
if (!result)
{

char message[3000];
explain_message_mkdtemp(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkdtemp_or_die(3) function.

explain_message_errno_mkdtemp
void explain_message_errno_mkdtemp(char *message, int message_size, int errnum, char *pathname);

The explain_message_errno_mkdtempfunction is used to obtain an explanation of an error returned by
the mkdtemp(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to themkdtemp(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = mkdtemp(pathname);
if (!result)

538

explain_mkdtemp(3) explain_mkdtemp(3)

{
int err = errno;
char message[3000];

explain_message_errno_mkdtemp(message, sizeof(message), err,
pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkdtemp_or_die(3) function.

SEE ALSO
mkdtemp(3)

create a unique temporary directory

explain_mkdtemp_or_die(3)
create a unique temporary directory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

539

explain_mkdtemp_or_die(3) explain_mkdtemp_or_die(3)

NAME
explain_mkdtemp_or_die − create a unique temporary directory and report errors

SYNOPSIS
#include <libexplain/mkdtemp.h>

char *explain_mkdtemp_or_die(char *pathname);
char *explain_mkdtemp_on_error(char *pathname);

DESCRIPTION
The explain_mkdtemp_or_die function is used to call themkdtemp(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_mkdtemp(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_mkdtemp_on_error function is used to call themkdtemp(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_mkdtemp(3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed to themkdtemp(3) system call.

RETURN VALUE
Theexplain_mkdtemp_or_diefunction only returns on success, seemkdtemp(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_mkdtemp_on_error function always returns the value return by the wrappedmkdtemp(3)
system call.

EXAMPLE
The explain_mkdtemp_or_die function is intended to be used in a fashion similar to the following
example:

char *result = explain_mkdtemp_or_die(pathname);

SEE ALSO
mkdtemp(3)

create a unique temporary directory

explain_mkdtemp(3)
explainmkdtemp(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

540

explain_mknod(3) explain_mknod(3)

NAME
explain_mknod − explainmknod(2) errors

SYNOPSIS
#include <libexplain/mknod.h>

const char *explain_mknod(const char *pathname, mode_t mode, dev_t dev);
const char *explain_errno_mknod(int errnum, const char *pathname, mode_t mode, dev_t dev);
void explain_message_mknod(char *message, int message_size, const char *pathname, mode_t mode,
dev_t dev);
void explain_message_errno_mknod(char *message, int message_size, int errnum, const char *pathname,
mode_t mode, dev_t dev);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themknod(2) system call.

explain_mknod
const char *explain_mknod(const char *pathname, mode_t mode, dev_t dev);

Theexplain_mknod function is used to obtain an explanation of an error returned by themknod(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to themknod(2) system call.

mode The original mode, exactly as passed to themknod(2) system call.

dev The original dev, exactly as passed to themknod(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (mknod(pathname, mode, dev) < 0)
{

fprintf(stderr, "%s\n", explain_mknod(pathname, mode, dev));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mknod_or_die(3) function.

explain_errno_mknod
const char *explain_errno_mknod(int errnum, const char *pathname, mode_t mode, dev_t dev);

Theexplain_errno_mknod function is used to obtain an explanation of an error returned by themknod(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to themknod(2) system call.

mode The original mode, exactly as passed to themknod(2) system call.

541

explain_mknod(3) explain_mknod(3)

dev The original dev, exactly as passed to themknod(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (mknod(pathname, mode, dev) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_mknod(err, pathname,
mode, dev));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mknod_or_die(3) function.

explain_message_mknod
void explain_message_mknod(char *message, int message_size, const char *pathname, mode_t mode,
dev_t dev);

The explain_message_mknodfunction is used to obtain an explanation of an error returned by the
mknod(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to themknod(2) system call.

mode The original mode, exactly as passed to themknod(2) system call.

dev The original dev, exactly as passed to themknod(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (mknod(pathname, mode, dev) < 0)
{

char message[3000];
explain_message_mknod(message, sizeof(message), pathname,
mode, dev);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mknod_or_die(3) function.

explain_message_errno_mknod
void explain_message_errno_mknod(char *message, int message_size, int errnum, const char *pathname,
mode_t mode, dev_t dev);

Theexplain_message_errno_mknodfunction is used to obtain an explanation of an error returned by the
mknod(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

542

explain_mknod(3) explain_mknod(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to themknod(2) system call.

mode The original mode, exactly as passed to themknod(2) system call.

dev The original dev, exactly as passed to themknod(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (mknod(pathname, mode, dev) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_mknod(message, sizeof(message), err,
pathname, mode, dev);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mknod_or_die(3) function.

SEE ALSO
mknod(2)

create a special or ordinary file

explain_mknod_or_die(3)
create a special or ordinary file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

543

explain_mknod_or_die(3) explain_mknod_or_die(3)

NAME
explain_mknod_or_die − create a special or ordinary file and report errors

SYNOPSIS
#include <libexplain/mknod.h>

void explain_mknod_or_die(const char *pathname, mode_t mode, dev_t dev);
int explain_mknod_on_error(const char *pathname, mode_t mode, dev_t dev);

DESCRIPTION
The explain_mknod_or_die function is used to call themknod(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_mknod(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_mknod_on_error function is used to call themknod(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_mknod(3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed to themknod(2) system call.

mode The mode, exactly as to be passed to themknod(2) system call.

dev The dev, exactly as to be passed to themknod(2) system call.

RETURN VALUE
The explain_mknod_or_die function only returns on success, seemknod(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_mknod_on_error function always returns the value return by the wrappedmknod(2) system
call.

EXAMPLE
Theexplain_mknod_or_diefunction is intended to be used in a fashion similar to the following example:

explain_mknod_or_die(pathname, mode, dev);

SEE ALSO
mknod(2)

create a special or ordinary file

explain_mknod(3)
explainmknod(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

544

explain_mkostemp(3) explain_mkostemp(3)

NAME
explain_mkostemp − explainmkostemp(3) errors

SYNOPSIS
#include <libexplain/mkostemp.h>

const char *explain_mkostemp(char *templat, int flags);
const char *explain_errno_mkostemp(int errnum, char *templat, int flags);
void explain_message_mkostemp(char *message, int message_size, char *templat, int flags);
void explain_message_errno_mkostemp(char *message, int message_size, int errnum, char *templat, int
flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themkostemp(3) system call.

explain_mkostemp
const char *explain_mkostemp(char *templat, int flags);

Theexplain_mkostempfunction is used to obtain an explanation of an error returned by themkostemp(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

templat The original template, exactly as passed to themkostemp(3) system call.

flags The original flags, exactly as passed to themkostemp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = mkostemp(templat, flags);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_mkostemp(templat, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkostemp_or_die(3) function.

explain_errno_mkostemp
const char *explain_errno_mkostemp(int errnum, char *templat, int flags);

The explain_errno_mkostemp function is used to obtain an explanation of an error returned by the
mkostemp(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

templat The original template, exactly as passed to themkostemp(3) system call.

flags The original flags, exactly as passed to themkostemp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

545

explain_mkostemp(3) explain_mkostemp(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = mkostemp(templat, flags);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_mkostemp(err, templat,
flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkostemp_or_die(3) function.

explain_message_mkostemp
void explain_message_mkostemp(char *message, int message_size, char *templat, int flags);

The explain_message_mkostempfunction is used to obtain an explanation of an error returned by the
mkostemp(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

templat The original template, exactly as passed to themkostemp(3) system call.

flags The original flags, exactly as passed to themkostemp(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = mkostemp(templat, flags);
if (result < 0)
{

char message[3000];
explain_message_mkostemp(message, sizeof(message), templat,
flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkostemp_or_die(3) function.

explain_message_errno_mkostemp
void explain_message_errno_mkostemp(char *message, int message_size, int errnum, char *templat, int
flags);

Theexplain_message_errno_mkostempfunction is used to obtain an explanation of an error returned by
themkostemp(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

546

explain_mkostemp(3) explain_mkostemp(3)

templat The original template, exactly as passed to themkostemp(3) system call.

flags The original flags, exactly as passed to themkostemp(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = mkostemp(templat, flags);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_mkostemp(message, sizeof(message), err,
templat, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkostemp_or_die(3) function.

SEE ALSO
mkostemp(3)

create a unique temporary file

explain_mkostemp_or_die(3)
create a unique temporary file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

547

explain_mkostemp_or_die(3) explain_mkostemp_or_die(3)

NAME
explain_mkostemp_or_die − create a unique temporary file and report errors

SYNOPSIS
#include <libexplain/mkostemp.h>

int explain_mkostemp_or_die(char *templat, int flags);
int explain_mkostemp_on_error(char *templat, int flags);

DESCRIPTION
The explain_mkostemp_or_die function is used to call themkostemp(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_mkostemp(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_mkostemp_on_error function is used to call themkostemp(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_mkostemp(3) function, but still returns to
the caller.

templat The template, exactly as to be passed to themkostemp(3) system call.

flags The flags, exactly as to be passed to themkostemp(3) system call.

RETURN VALUE
The explain_mkostemp_or_diefunction only returns on success, seemkostemp(3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_mkostemp_on_errorfunction always returns the value return by the wrappedmkostemp(3)
system call.

EXAMPLE
The explain_mkostemp_or_diefunction is intended to be used in a fashion similar to the following
example:

int result = explain_mkostemp_or_die(templat, flags);

SEE ALSO
mkostemp(3)

create a unique temporary file

explain_mkostemp(3)
explainmkostemp(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

548

explain_mkstemp(3) explain_mkstemp(3)

NAME
explain_mkstemp − explainmkstemp(3) errors

SYNOPSIS
#include <libexplain/mkstemp.h>

const char *explain_mkstemp(char *templat);
const char *explain_errno_mkstemp(int errnum, char *templat);
void explain_message_mkstemp(char *message, int message_size, char *templat);
void explain_message_errno_mkstemp(char *message, int message_size, int errnum, char *templat);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themkstemp(3) system call.

explain_mkstemp
const char *explain_mkstemp(char *templat);

The explain_mkstemp function is used to obtain an explanation of an error returned by themkstemp(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

templat The original template, exactly as passed to themkstemp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = mkstemp(templat);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_mkstemp(templat));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkstemp_or_die(3) function.

explain_errno_mkstemp
const char *explain_errno_mkstemp(int errnum, char *templat);

The explain_errno_mkstemp function is used to obtain an explanation of an error returned by the
mkstemp(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

templat The original template, exactly as passed to themkstemp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = mkstemp(templat);

549

explain_mkstemp(3) explain_mkstemp(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_mkstemp(err, templat));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkstemp_or_die(3) function.

explain_message_mkstemp
void explain_message_mkstemp(char *message, int message_size, char *templat);

The explain_message_mkstempfunction is used to obtain an explanation of an error returned by the
mkstemp(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

templat The original template, exactly as passed to themkstemp(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = mkstemp(templat);
if (result < 0)
{

char message[3000];
explain_message_mkstemp(message, sizeof(message), templat);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkstemp_or_die(3) function.

explain_message_errno_mkstemp
void explain_message_errno_mkstemp(char *message, int message_size, int errnum, char *templat);

The explain_message_errno_mkstempfunction is used to obtain an explanation of an error returned by
the mkstemp(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

templat The original template, exactly as passed to themkstemp(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = mkstemp(templat);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_mkstemp(message, sizeof(message), err,

550

explain_mkstemp(3) explain_mkstemp(3)

templat);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mkstemp_or_die(3) function.

SEE ALSO
mkstemp(3)

create a unique temporary file

explain_mkstemp_or_die(3)
create a unique temporary file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

551

explain_mkstemp_or_die(3) explain_mkstemp_or_die(3)

NAME
explain_mkstemp_or_die − create a unique temporary file and report errors

SYNOPSIS
#include <libexplain/mkstemp.h>

int explain_mkstemp_or_die(char *templat);
int explain_mkstemp_on_error(char *templat);

DESCRIPTION
The explain_mkstemp_or_die function is used to call themkstemp(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_mkstemp(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_mkstemp_on_error function is used to call themkstemp(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_mkstemp(3) function, but still returns to the
caller.

templat The template, exactly as to be passed to themkstemp(3) system call.

RETURN VALUE
Theexplain_mkstemp_or_diefunction only returns on success, seemkstemp(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_mkstemp_on_error function always returns the value return by the wrappedmkstemp(3)
system call.

EXAMPLE
The explain_mkstemp_or_die function is intended to be used in a fashion similar to the following
example:

int result = explain_mkstemp_or_die(templat);

SEE ALSO
mkstemp(3)

create a unique temporary file

explain_mkstemp(3)
explainmkstemp(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

552

explain_mktemp(3) explain_mktemp(3)

NAME
explain_mktemp − explainmktemp(3) errors

SYNOPSIS
#include <libexplain/mktemp.h>

const char *explain_mktemp(char *pathname);
const char *explain_errno_mktemp(int errnum, char *pathname);
void explain_message_mktemp(char *message, int message_size, char *pathname);
void explain_message_errno_mktemp(char *message, int message_size, int errnum, char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themktemp(3) system call.

explain_mktemp
const char *explain_mktemp(char *pathname);

The explain_mktemp function is used to obtain an explanation of an error returned by themktemp(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to themktemp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = mktemp(pathname);
if (!result)
{

fprintf(stderr, "%s\n", explain_mktemp(pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mktemp_or_die(3) function.

explain_errno_mktemp
const char *explain_errno_mktemp(int errnum, char *pathname);

The explain_errno_mktemp function is used to obtain an explanation of an error returned by the
mktemp(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to themktemp(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

553

explain_mktemp(3) explain_mktemp(3)

Example: This function is intended to be used in a fashion similar to the following example:
char *result = mktemp(pathname);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_mktemp(err, pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mktemp_or_die(3) function.

explain_message_mktemp
void explain_message_mktemp(char *message, int message_size, char *pathname);

The explain_message_mktempfunction is used to obtain an explanation of an error returned by the
mktemp(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to themktemp(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = mktemp(pathname);
if (!result)
{

char message[3000];
explain_message_mktemp(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mktemp_or_die(3) function.

explain_message_errno_mktemp
void explain_message_errno_mktemp(char *message, int message_size, int errnum, char *pathname);

Theexplain_message_errno_mktempfunction is used to obtain an explanation of an error returned by the
mktemp(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to themktemp(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = mktemp(pathname);
if (!result)

554

explain_mktemp(3) explain_mktemp(3)

{
int err = errno;
char message[3000];

explain_message_errno_mktemp(message, sizeof(message), err,
pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mktemp_or_die(3) function.

SEE ALSO
mktemp(3)

make a unique temporary filename

explain_mktemp_or_die(3)
make a unique temporary filename and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

555

explain_mktemp_or_die(3) explain_mktemp_or_die(3)

NAME
explain_mktemp_or_die − make a unique temporary filename and report errors

SYNOPSIS
#include <libexplain/mktemp.h>

char *explain_mktemp_or_die(char *pathname);
char *explain_mktemp_on_error(char *pathname);

DESCRIPTION
Theexplain_mktemp_or_diefunction is used to call themktemp(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_mktemp(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_mktemp_on_error function is used to call themktemp(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_mktemp(3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed to themktemp(3) system call.

RETURN VALUE
The explain_mktemp_or_die function only returns on success, seemktemp(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_mktemp_on_error function always returns the value return by the wrappedmktemp(3)
system call.

EXAMPLE
Theexplain_mktemp_or_diefunction is intended to be used in a fashion similar to the following example:

char *result = explain_mktemp_or_die(pathname);

SEE ALSO
mktemp(3)

make a unique temporary filename

explain_mktemp(3)
explainmktemp(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

556

explain_mmap(3) explain_mmap(3)

NAME
explain_mmap − explainmmap(2) errors

SYNOPSIS
#include <libexplain/mmap.h>

const char *explain_mmap(void *data, size_t data_size, int prot, int flags, int fildes, off_t offset);
const char *explain_errno_mmap(int errnum, void *data, size_t data_size, int prot, int flags, int fildes, off_t
offset);
void explain_message_mmap(char *message, int message_size, void *data, size_t data_size, int prot, int
flags, int fildes, off_t offset);
void explain_message_errno_mmap(char *message, int message_size, int errnum, void *data, size_t
data_size, int prot, int flags, int fildes, off_t offset);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themmap(2) system call.

explain_mmap
const char *explain_mmap(void *data, size_t data_size, int prot, int flags, int fildes, off_t offset);

The explain_mmap function is used to obtain an explanation of an error returned by themmap(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to themmap(2) system call.

data_size
The original data_size, exactly as passed to themmap(2) system call.

prot The original prot, exactly as passed to themmap(2) system call.

flags The original flags, exactly as passed to themmap(2) system call.

fildes The original fildes, exactly as passed to themmap(2) system call.

offset The original offset, exactly as passed to themmap(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
void *result = mmap(data, data_size, prot, flags, fildes, offset);
if (!result)
{

fprintf(stderr, "%s\n", explain_mmap(data, data_size, prot,
flags, fildes, offset));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mmap_or_die(3) function.

explain_errno_mmap
const char *explain_errno_mmap(int errnum, void *data, size_t data_size, int prot, int flags, int fildes, off_t
offset);

The explain_errno_mmap function is used to obtain an explanation of an error returned by themmap(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

557

explain_mmap(3) explain_mmap(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to themmap(2) system call.

data_size
The original data_size, exactly as passed to themmap(2) system call.

prot The original prot, exactly as passed to themmap(2) system call.

flags The original flags, exactly as passed to themmap(2) system call.

fildes The original fildes, exactly as passed to themmap(2) system call.

offset The original offset, exactly as passed to themmap(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
void *result = mmap(data, data_size, prot, flags, fildes, offset);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_mmap(err, data,
data_size, prot, flags, fildes, offset));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mmap_or_die(3) function.

explain_message_mmap
void explain_message_mmap(char *message, int message_size, void *data, size_t data_size, int prot, int
flags, int fildes, off_t offset);

The explain_message_mmapfunction is used to obtain an explanation of an error returned by the
mmap(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to themmap(2) system call.

data_size
The original data_size, exactly as passed to themmap(2) system call.

prot The original prot, exactly as passed to themmap(2) system call.

flags The original flags, exactly as passed to themmap(2) system call.

fildes The original fildes, exactly as passed to themmap(2) system call.

offset The original offset, exactly as passed to themmap(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
void *result = mmap(data, data_size, prot, flags, fildes, offset);
if (!result)

558

explain_mmap(3) explain_mmap(3)

{
char message[3000];

explain_message_mmap(message, sizeof(message), data,
data_size, prot, flags, fildes, offset);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mmap_or_die(3) function.

explain_message_errno_mmap
void explain_message_errno_mmap(char *message, int message_size, int errnum, void *data, size_t
data_size, int prot, int flags, int fildes, off_t offset);

The explain_message_errno_mmapfunction is used to obtain an explanation of an error returned by the
mmap(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to themmap(2) system call.

data_size
The original data_size, exactly as passed to themmap(2) system call.

prot The original prot, exactly as passed to themmap(2) system call.

flags The original flags, exactly as passed to themmap(2) system call.

fildes The original fildes, exactly as passed to themmap(2) system call.

offset The original offset, exactly as passed to themmap(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
void *result = mmap(data, data_size, prot, flags, fildes, offset);
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_mmap(message, sizeof(message), err,
data, data_size, prot, flags, fildes, offset);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_mmap_or_die(3) function.

SEE ALSO
mmap(2)

map file or device into memory

explain_mmap_or_die(3)
map file or device into memory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

559

explain_mmap_or_die(3) explain_mmap_or_die(3)

NAME
explain_mmap_or_die − map file or device into memory and report errors

SYNOPSIS
#include <libexplain/mmap.h>

void *explain_mmap_or_die(void *data, size_t data_size, int prot, int flags, int fildes, off_t offset);
void *explain_mmap_on_error(void *data, size_t data_size, int prot, int flags, int fildes, off_t offset);

DESCRIPTION
Theexplain_mmap_or_diefunction is used to call themmap(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_mmap(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_mmap_on_error function is used to call themmap(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_mmap(3) function, but still returns to the caller.

data The data, exactly as to be passed to themmap(2) system call.

data_size
The data_size, exactly as to be passed to themmap(2) system call.

prot The prot, exactly as to be passed to themmap(2) system call.

flags The flags, exactly as to be passed to themmap(2) system call.

fildes The fildes, exactly as to be passed to themmap(2) system call.

offset The offset, exactly as to be passed to themmap(2) system call.

RETURN VALUE
The explain_mmap_or_die function only returns on success, seemmap(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_mmap_on_error function always returns the value return by the wrappedmmap(2) system
call.

EXAMPLE
Theexplain_mmap_or_diefunction is intended to be used in a fashion similar to the following example:

explain_mmap_or_die(data, data_size, prot, flags, fildes, offset);

SEE ALSO
mmap(2)

map file or device into memory

explain_mmap(3)
explainmmap(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

560

explain_mount(3) explain_mount(3)

NAME
explain_mount − explainmount(2) errors

SYNOPSIS
#include <libexplain/mount.h>

const char *explain_mount(const char *source, const char *target, const char *file_systems_type, unsigned
long flags, const void *data);
const char *explain_errno_mount(int errnum, const char *source, const char *target, const char
*file_systems_type, unsigned long flags, const void *data);
void explain_message_mount(char *message, int message_size, const char *source, const char *target,
const char *file_systems_type, unsigned long flags, const void *data);
void explain_message_errno_mount(char *message, int message_size, int errnum, const char *source, const
char *target, const char *file_systems_type, unsigned long flags, const void *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themount(2) system call.

explain_mount
const char *explain_mount(const char *source, const char *target, const char *file_systems_type, unsigned
long flags, const void *data);

Theexplain_mount function is used to obtain an explanation of an error returned by themount(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

source The original source, exactly as passed to themount(2) system call.

target The original target, exactly as passed to themount(2) system call.

file_systems_type
The original file_systems_type, exactly as passed to themount(2) system call.

flags The original flags, exactly as passed to themount(2) system call.

data The original data, exactly as passed to themount(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (mount(source, target, file_systems_type, flags, data) < 0)
{

fprintf(stderr, "%s\n", explain_mount(source, target,
file_systems_type, flags, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_mount_or_die(3) function.

explain_errno_mount
const char *explain_errno_mount(int errnum, const char *source, const char *target, const char
*file_systems_type, unsigned long flags, const void *data);

The explain_errno_mount function is used to obtain an explanation of an error returned by themount(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

561

explain_mount(3) explain_mount(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

source The original source, exactly as passed to themount(2) system call.

target The original target, exactly as passed to themount(2) system call.

file_systems_type
The original file_systems_type, exactly as passed to themount(2) system call.

flags The original flags, exactly as passed to themount(2) system call.

data The original data, exactly as passed to themount(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (mount(source, target, file_systems_type, flags, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_mount(err, source,
target, file_systems_type, flags, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_mount_or_die(3) function.

explain_message_mount
void explain_message_mount(char *message, int message_size, const char *source, const char *target,
const char *file_systems_type, unsigned long flags, const void *data);

The explain_message_mountfunction is used to obtain an explanation of an error returned by the
mount(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

source The original source, exactly as passed to themount(2) system call.

target The original target, exactly as passed to themount(2) system call.

file_systems_type
The original file_systems_type, exactly as passed to themount(2) system call.

flags The original flags, exactly as passed to themount(2) system call.

data The original data, exactly as passed to themount(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (mount(source, target, file_systems_type, flags, data) < 0)
{

char message[3000];
explain_message_mount(message, sizeof(message), source,
target, file_systems_type, flags, data);

562

explain_mount(3) explain_mount(3)

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_mount_or_die(3) function.

explain_message_errno_mount
void explain_message_errno_mount(char *message, int message_size, int errnum, const char *source, const
char *target, const char *file_systems_type, unsigned long flags, const void *data);

The explain_message_errno_mountfunction is used to obtain an explanation of an error returned by the
mount(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

source The original source, exactly as passed to themount(2) system call.

target The original target, exactly as passed to themount(2) system call.

file_systems_type
The original file_systems_type, exactly as passed to themount(2) system call.

flags The original flags, exactly as passed to themount(2) system call.

data The original data, exactly as passed to themount(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (mount(source, target, file_systems_type, flags, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_mount(message, sizeof(message), err,
source, target, file_systems_type, flags, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_mount_or_die(3) function.

SEE ALSO
mount(2)

mount file system

explain_mount_or_die(3)
mount file system and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

563

explain_mount_or_die(3) explain_mount_or_die(3)

NAME
explain_mount_or_die − mount file system and report errors

SYNOPSIS
#include <libexplain/mount.h>

void explain_mount_or_die(const char *source, const char *target, const char *file_systems_type, unsigned
long flags, const void *data);
int explain_mount_on_error(const char *source, const char *target, const char *file_systems_type,
unsigned long flags, const void *data);

DESCRIPTION
The explain_mount_or_die function is used to call themount(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_mount(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_mount_on_error function is used to call themount(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_mount(3) function, but still returns to the caller.

source The source, exactly as to be passed to themount(2) system call.

target The target, exactly as to be passed to themount(2) system call.

file_systems_type
The file_systems_type, exactly as to be passed to themount(2) system call.

flags The flags, exactly as to be passed to themount(2) system call.

data The data, exactly as to be passed to themount(2) system call.

RETURN VALUE
The explain_mount_or_die function only returns on success, seemount(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_mount_on_error function always returns the value return by the wrappedmount(2) system
call.

EXAMPLE
Theexplain_mount_or_diefunction is intended to be used in a fashion similar to the following example:

explain_mount_or_die(source, target, file_systems_type, flags, data);

SEE ALSO
mount(2)

mount file system

explain_mount(3)
explainmount(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

564

explain_munmap(3) explain_munmap(3)

NAME
explain_munmap − explainmunmap(2) errors

SYNOPSIS
#include <libexplain/munmap.h>

const char *explain_munmap(void *data, size_t data_size);
const char *explain_errno_munmap(int errnum, void *data, size_t data_size);
void explain_message_munmap(char *message, int message_size, void *data, size_t data_size);
void explain_message_errno_munmap(char *message, int message_size, int errnum, void *data, size_t
data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by themunmap(2) system call.

explain_munmap
const char *explain_munmap(void *data, size_t data_size);

The explain_munmap function is used to obtain an explanation of an error returned by themunmap(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to themunmap(2) system call.

data_size
The original data_size, exactly as passed to themunmap(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (munmap(data, data_size) < 0)
{

fprintf(stderr, "%s\n", explain_munmap(data, data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_munmap_or_die(3) function.

explain_errno_munmap
const char *explain_errno_munmap(int errnum, void *data, size_t data_size);

The explain_errno_munmap function is used to obtain an explanation of an error returned by the
munmap(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to themunmap(2) system call.

data_size
The original data_size, exactly as passed to themunmap(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

565

explain_munmap(3) explain_munmap(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (munmap(data, data_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_munmap(err, data,
data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_munmap_or_die(3) function.

explain_message_munmap
void explain_message_munmap(char *message, int message_size, void *data, size_t data_size);

The explain_message_munmapfunction is used to obtain an explanation of an error returned by the
munmap(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to themunmap(2) system call.

data_size
The original data_size, exactly as passed to themunmap(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (munmap(data, data_size) < 0)
{

char message[3000];
explain_message_munmap(message, sizeof(message), data,
data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_munmap_or_die(3) function.

explain_message_errno_munmap
void explain_message_errno_munmap(char *message, int message_size, int errnum, void *data, size_t
data_size);

The explain_message_errno_munmapfunction is used to obtain an explanation of an error returned by
the munmap(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

566

explain_munmap(3) explain_munmap(3)

data The original data, exactly as passed to themunmap(2) system call.

data_size
The original data_size, exactly as passed to themunmap(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (munmap(data, data_size) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_munmap(message, sizeof(message), err,
data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_munmap_or_die(3) function.

SEE ALSO
munmap(2)

unmap a file or device from memory

explain_munmap_or_die(3)
unmap a file or device from memory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

567

explain_munmap_or_die(3) explain_munmap_or_die(3)

NAME
explain_munmap_or_die − unmap a file or device from memory and report errors

SYNOPSIS
#include <libexplain/munmap.h>

void explain_munmap_or_die(void *data, size_t data_size);
int explain_munmap_on_error(void *data, size_t data_size);

DESCRIPTION
The explain_munmap_or_die function is used to call themunmap(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_munmap(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_munmap_on_error function is used to call themunmap(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_munmap(3) function, but still returns to the
caller.

data The data, exactly as to be passed to themunmap(2) system call.

data_size
The data_size, exactly as to be passed to themunmap(2) system call.

RETURN VALUE
Theexplain_munmap_or_diefunction only returns on success, seemunmap(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_munmap_on_error function always returns the value return by the wrappedmunmap(2)
system call.

EXAMPLE
The explain_munmap_or_die function is intended to be used in a fashion similar to the following
example:

explain_munmap_or_die(data, data_size);

SEE ALSO
munmap(2)

unmap a file or device from memory

explain_munmap(3)
explainmunmap(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

568

explain_nanosleep(3) explain_nanosleep(3)

NAME
explain_nanosleep − explainnanosleep(2) errors

SYNOPSIS
#include <libexplain/nanosleep.h>

const char *explain_nanosleep(const struct timespec *req, struct timespec *rem);
const char *explain_errno_nanosleep(int errnum, const struct timespec *req, struct timespec *rem);
void explain_message_nanosleep(char *message, int message_size, const struct timespec *req, struct
timespec *rem);
void explain_message_errno_nanosleep(char *message, int message_size, int errnum, const struct timespec
*req, struct timespec *rem);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thenanosleep(2) system call.

explain_nanosleep
const char *explain_nanosleep(const struct timespec *req, struct timespec *rem);

The explain_nanosleepfunction is used to obtain an explanation of an error returned by thenanosleep(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

req The original req, exactly as passed to thenanosleep(2) system call.

rem The original rem, exactly as passed to thenanosleep(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (nanosleep(req, rem) < 0)
{

fprintf(stderr, "%s\n", explain_nanosleep(req, rem));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_nanosleep_or_die(3) function.

explain_errno_nanosleep
const char *explain_errno_nanosleep(int errnum, const struct timespec *req, struct timespec *rem);

The explain_errno_nanosleepfunction is used to obtain an explanation of an error returned by the
nanosleep(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

req The original req, exactly as passed to thenanosleep(2) system call.

rem The original rem, exactly as passed to thenanosleep(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

569

explain_nanosleep(3) explain_nanosleep(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (nanosleep(req, rem) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_nanosleep(err, req,
rem));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_nanosleep_or_die(3) function.

explain_message_nanosleep
void explain_message_nanosleep(char *message, int message_size, const struct timespec *req, struct
timespec *rem);

The explain_message_nanosleepfunction is used to obtain an explanation of an error returned by the
nanosleep(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

req The original req, exactly as passed to thenanosleep(2) system call.

rem The original rem, exactly as passed to thenanosleep(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (nanosleep(req, rem) < 0)
{

char message[3000];
explain_message_nanosleep(message, sizeof(message), req, rem);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_nanosleep_or_die(3) function.

explain_message_errno_nanosleep
void explain_message_errno_nanosleep(char *message, int message_size, int errnum, const struct timespec
*req, struct timespec *rem);

The explain_message_errno_nanosleepfunction is used to obtain an explanation of an error returned by
thenanosleep(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

req The original req, exactly as passed to thenanosleep(2) system call.

570

explain_nanosleep(3) explain_nanosleep(3)

rem The original rem, exactly as passed to thenanosleep(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (nanosleep(req, rem) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_nanosleep(message, sizeof(message), err,
req, rem);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_nanosleep_or_die(3) function.

SEE ALSO
nanosleep(2)

high-resolution sleep

explain_nanosleep_or_die(3)
high-resolution sleep and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

571

explain_nanosleep_or_die(3) explain_nanosleep_or_die(3)

NAME
explain_nanosleep_or_die − high-resolution sleep and report errors

SYNOPSIS
#include <libexplain/nanosleep.h>

void explain_nanosleep_or_die(const struct timespec *req, struct timespec *rem);
int explain_nanosleep_on_error(const struct timespec *req, struct timespec *rem);

DESCRIPTION
The explain_nanosleep_or_diefunction is used to call thenanosleep(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_nanosleep(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_nanosleep_on_errorfunction is used to call thenanosleep(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_nanosleep(3) function, but still returns to
the caller.

req The req, exactly as to be passed to thenanosleep(2) system call.

rem The rem, exactly as to be passed to thenanosleep(2) system call.

RETURN VALUE
The explain_nanosleep_or_diefunction only returns on success, seenanosleep(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_nanosleep_on_errorfunction always returns the value return by the wrappednanosleep(2)
system call.

EXAMPLE
The explain_nanosleep_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_nanosleep_or_die(req, rem);

SEE ALSO
nanosleep(2)

high-resolution sleep

explain_nanosleep(3)
explainnanosleep(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

572

explain_nice(3) explain_nice(3)

NAME
explain_nice − explain nice(2) errors

SYNOPSIS
#include <libexplain/nice.h>

const char *explain_nice(int inc);
const char *explain_errno_nice(int errnum, int inc);
void explain_message_nice(char *message, int message_size, int inc);
void explain_message_errno_nice(char *message, int message_size, int errnum, int inc);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thenice(2) system call.

explain_nice
const char *explain_nice(int inc);

Theexplain_nicefunction is used to obtain an explanation of an error returned by thenice(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

inc The original inc, exactly as passed to thenice(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = nice(inc);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_nice(inc));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_nice_or_die(3) function.

explain_errno_nice
const char *explain_errno_nice(int errnum, int inc);

The explain_errno_nice function is used to obtain an explanation of an error returned by thenice(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

inc The original inc, exactly as passed to thenice(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = nice(inc);

573

explain_nice(3) explain_nice(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_nice(err, inc));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_nice_or_die(3) function.

explain_message_nice
void explain_message_nice(char *message, int message_size, int inc);

The explain_message_nicefunction is used to obtain an explanation of an error returned by thenice(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

inc The original inc, exactly as passed to thenice(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = nice(inc);
if (result < 0)
{

char message[3000];
explain_message_nice(message, sizeof(message), inc);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_nice_or_die(3) function.

explain_message_errno_nice
void explain_message_errno_nice(char *message, int message_size, int errnum, int inc);

The explain_message_errno_nicefunction is used to obtain an explanation of an error returned by the
nice(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

inc The original inc, exactly as passed to thenice(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = nice(inc);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_nice(message, sizeof(message), err,

574

explain_nice(3) explain_nice(3)

inc);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_nice_or_die(3) function.

SEE ALSO
nice(2) change process priority

explain_nice_or_die(3)
change process priority and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

575

explain_nice_or_die(3) explain_nice_or_die(3)

NAME
explain_nice_or_die − change process priority and report errors

SYNOPSIS
#include <libexplain/nice.h>

int explain_nice_or_die(int inc);
int explain_nice_on_error(int inc);

DESCRIPTION
Theexplain_nice_or_diefunction is used to call thenice(2) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_nice(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_nice_on_errorfunction is used to call thenice(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_nice(3) function, but still returns to the caller.

inc The inc, exactly as to be passed to thenice(2) system call.

RETURN VALUE
The explain_nice_or_diefunction only returns on success, seenice(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_nice_on_errorfunction always returns the value return by the wrappednice(2) system call.

EXAMPLE
Theexplain_nice_or_diefunction is intended to be used in a fashion similar to the following example:

int result = explain_nice_or_die(inc);

SEE ALSO
nice(2) change process priority

explain_nice(3)
explainnice(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

576

explain_open(3) explain_open(3)

NAME
explain_open − explain open(2) errors

SYNOPSIS
#include <libexplain/open.h>
const char *explain_open(const char *pathname, int flags, int mode);
const char *explain_errno_open(int errnum, const char *pathname, int flags, int mode);
void explain_message_open(char *message, int message_size, const char *pathname, int flags, int mode);
void explain_message_errno_open(char *message, int message_size, int errnum, const char *pathname, int
flags, int mode);

DESCRIPTION
These functions may be used to obtains explanations foropen(2) errors.

explain_open(const char *pathname, int flags, int mode);
const char *explain_open(const char *pathname, int flags, int mode);

The explain_open function is used to obtain an explanation of an error returned by theopen(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int fd = open(pathname, flags, mode);
if (fd < 0)
{

fprintf(stderr, ’%s0, explain_open(pathname, flags, mode));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to theopen(2) system call.

flags The original flags, exactly as passed to theopen(2) system call.

mode The original mode, exactly as passed to theopen(2) system call (or zero if the original call didn’t
need a mode argument).

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_open
const char *explain_errno_open(int errnum, const char *pathname, int flags, int mode);

The explain_errno_open function is used to obtain an explanation of an error returned by theopen(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int fd = open(pathname, flags, mode);
if (fd < 0)
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_open(err, pathname,

flags, mode));
exit(EXIT_FAILURE);

}

577

explain_open(3) explain_open(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theopen(2) system call.

flags The original flags, exactly as passed to theopen(2) system call.

mode The original mode, exactly as passed to theopen(2) system call (or zero if the original call didn’t
need a mode argument).

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_open
void explain_message_open(char *message, int message_size, const char *pathname, int flags, int mode);

The explain_message_open function is used to obtain an explanation of an error returned by theopen(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int fd = open(pathname, flags, mode);
if (fd < 0)
{

char message[3000];
explain_message_open(message, sizeof(message), pathname, flags,

mode);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theopen(2) system call.

flags The original flags, exactly as passed to theopen(2) system call.

mode The original mode, exactly as passed to theopen(2) system call (or zero if the original call didn’t
need a mode argument).

explain_message_errno_open
void explain_message_errno_open(char *message, int message_size, int errnum, const char *pathname, int
flags, int mode);

The explain_message_errno_open function is used to obtain an explanation of an error returned by the
open(2) system call.The least the message will contain is the value ofstrerror(errnum) , but usually
it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following exameple:
int fd = open(pathname, flags, mode);
if (fd < 0)
{

578

explain_open(3) explain_open(3)

int err = errno;
char message[3000];
explain_message_errno_open(message, sizeof(message), err, pathname,

flags, mode);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theopen(2) system call.

flags The original flags, exactly as passed to theopen(2) system call.

mode The original mode, exactly as passed to theopen(2) system call (or zero if the original call didn’t
need a mode argument).

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

579

explain_openat(3) explain_openat(3)

NAME
explain_openat − explainopenat(2) errors

SYNOPSIS
#include <libexplain/openat.h>

const char *explain_openat(int fildes, const char *pathname, int flags, mode_t mode);
const char *explain_errno_openat(int errnum, int fildes, const char *pathname, int flags, mode_t mode);
void explain_message_openat(char *message, int message_size, int fildes, const char *pathname, int flags,
mode_t mode);
void explain_message_errno_openat(char *message, int message_size, int errnum, int fildes, const char
*pathname, int flags, mode_t mode);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theopenat(2) system call.

explain_openat
const char *explain_openat(int fildes, const char *pathname, int flags, mode_t mode);

Theexplain_openatfunction is used to obtain an explanation of an error returned by theopenat(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to theopenat(2) system call.

pathname
The original pathname, exactly as passed to theopenat(2) system call.

flags The original flags, exactly as passed to theopenat(2) system call.

mode The original mode, exactly as passed to theopenat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = openat(fildes, pathname, flags, mode);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_openat(fildes, pathname,
flags, mode));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_openat_or_die(3) function.

explain_errno_openat
const char *explain_errno_openat(int errnum, int fildes, const char *pathname, int flags, mode_t mode);

Theexplain_errno_openatfunction is used to obtain an explanation of an error returned by theopenat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

580

explain_openat(3) explain_openat(3)

fildes The original fildes, exactly as passed to theopenat(2) system call.

pathname
The original pathname, exactly as passed to theopenat(2) system call.

flags The original flags, exactly as passed to theopenat(2) system call.

mode The original mode, exactly as passed to theopenat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = openat(fildes, pathname, flags, mode);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_openat(err, fildes,
pathname, flags, mode));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_openat_or_die(3) function.

explain_message_openat
void explain_message_openat(char *message, int message_size, int fildes, const char *pathname, int flags,
mode_t mode);

The explain_message_openatfunction is used to obtain an explanation of an error returned by the
openat(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theopenat(2) system call.

pathname
The original pathname, exactly as passed to theopenat(2) system call.

flags The original flags, exactly as passed to theopenat(2) system call.

mode The original mode, exactly as passed to theopenat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = openat(fildes, pathname, flags, mode);
if (result < 0)
{

char message[3000];
explain_message_openat(message, sizeof(message), fildes,
pathname, flags, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_openat_or_die(3) function.

581

explain_openat(3) explain_openat(3)

explain_message_errno_openat
void explain_message_errno_openat(char *message, int message_size, int errnum, int fildes, const char
*pathname, int flags, mode_t mode);

Theexplain_message_errno_openatfunction is used to obtain an explanation of an error returned by the
openat(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theopenat(2) system call.

pathname
The original pathname, exactly as passed to theopenat(2) system call.

flags The original flags, exactly as passed to theopenat(2) system call.

mode The original mode, exactly as passed to theopenat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = openat(fildes, pathname, flags, mode);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_openat(message, sizeof(message), err,
fildes, pathname, flags, mode);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_openat_or_die(3) function.

SEE ALSO
openat(2)

open a file relative to a directory file descriptor

explain_openat_or_die(3)
open a file relative to a directory file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

582

explain_openat_or_die(3) explain_openat_or_die(3)

NAME
explain_openat_or_die − open a file relative to a dir fd and report errors

SYNOPSIS
#include <libexplain/openat.h>

int explain_openat_or_die(int fildes, const char *pathname, int flags, mode_t mode);
int explain_openat_on_error(int fildes, const char *pathname, int flags, mode_t mode);

DESCRIPTION
The explain_openat_or_diefunction is used to call theopenat(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_openat(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_openat_on_errorfunction is used to call theopenat(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_openat(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to theopenat(2) system call.

pathname
The pathname, exactly as to be passed to theopenat(2) system call.

flags The flags, exactly as to be passed to theopenat(2) system call.

mode The mode, exactly as to be passed to theopenat(2) system call.

RETURN VALUE
The explain_openat_or_diefunction only returns on success, seeopenat(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_openat_on_errorfunction always returns the value return by the wrappedopenat(2) system
call.

EXAMPLE
Theexplain_openat_or_diefunction is intended to be used in a fashion similar to the following example:

int result = explain_openat_or_die(fildes, pathname, flags, mode);

SEE ALSO
openat(2)

open a file relative to a directory file descriptor

explain_openat(3)
explainopenat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

583

explain_opendir(3) explain_opendir(3)

NAME
explain_opendir − explain opendir(3) errors

SYNOPSIS
const char *explain_opendir(const char *pathname);
const char *explain_errno_opendir(int errnum, const char *pathname); int errnum, const char *pathname);
void explain_message_opendir(char *message, int message_size,
void explain_message_errno_opendir(char *message, int message_size, const char *pathname);

DESCRIPTION
These functions may be used to explainopendir(3) errors.

explain_opendir
const char *explain_opendir(const char *pathname);

The explain_opendir function is used to obtain an explanation of an error returned by theopendir(3)
function. Theleast the message will contain is the value of strerror(errno), but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
DIR *dp = opendir(pathname);
if (!dp)
{

fprintf(stderr, "%s\n", explain_opendir(pathname));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to theopendir(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_opendir
const char *explain_errno_opendir(int errnum, const char *pathname); int errnum, const char *pathname);

The explain_errno_opendir function is used to obtain an explanation of an error returned by theopendir(3)
function. The least the message will contain is the value of strerror(errnum), but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
DIR *dp = opendir(pathname);
if (!dp)
{

int errnum = errno;
const char *message = explain_errno_opendir(errnum, pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

584

explain_opendir(3) explain_opendir(3)

pathname
The original pathname, exactly as passed to theopendir(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_opendir
void explain_message_opendir(char *message, int message_size, const char *pathname);

The explain_message_opendir function is used to obtain an explanation of an error returned by the
opendir(3) function. The least the message will contain is the value of strerror(errno), but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
DIR *dp = opendir(pathname);
if (!dp)
{

char message[3000];
explain_message_opendir(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe if the buffer is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theopendir(3) system call.

explain_message_errno_opendir
void explain_message_errno_opendir(char *message, int message_size, const char *pathname);

The explain_message_errno_opendir function is used to obtain an explanation of an error returned by the
opendir(3) function. The least the message will contain is the value of strerror(errnum), but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
DIR *dp = opendir(pathname);
if (!dp);
{

int err = errno;
char message[3000];
explain_message_errno_opendir(message, sizeof(message), err,

pathname);
fprintf(stderr, ’%s\n’, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe if the buffer is thread safe.
message_sizeThe size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be

585

explain_opendir(3) explain_opendir(3)

explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theopendir(3) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

586

explain_opendir_or_die(3) explain_opendir_or_die(3)

NAME
explain_opendir_or_die − open a directory and report errors

SYNOPSIS
#include <libexplain/opendir.h>

DIR *explain_opendir_or_die(const char *pathname);

DESCRIPTION
Theexplain_opendir_or_diefunction is used to call theopendir(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_opendir(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
DIR *dir = explain_opendir_or_die(pathname);

pathname
The pathname, exactly as to be passed to theopendir(3) system call.

Returns: On success, a pointer to the directory stream.On failure, prints an explanation and exits, does not
return.

SEE ALSO
opendir(3)

open a directory

explain_opendir(3)
explainopendir(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

587

explain_open_or_die(3) explain_open_or_die(3)

NAME
explain_open_or_die − open file and report errors

SYNOPSIS
#include <fcntl.h>
#include <libexplain/open.h>

int explain_open_or_die(const char *pathname, int flags, int mode);

DESCRIPTION
Given a pathname for a file, open() returns a file descriptor, a small, non-negative integer for use in
subsequent system calls (read(2), write(2), lseek(2), fcntl(2), etc.). The file descriptor returned by a
successful call will be the lowest-numbered file descriptor not currently open for the process.Seeopen(2)
for more information.

RETURN VALUE
On success, the new file descriptor is returned.

On error, a description of the error is obtained viaexplain_open(3), and printed onstderr. The process is
the terminated via a call to theexit(EXIT_FAILURE) function.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

588

explain_output(3) explain_output(3)

NAME
explain_output − output error messages

SYNOPSIS
#include <libexplain/output.h>

DESCRIPTION
These functions may be used to write error messages.

explain_output_message
void explain_output_message(const char *text);

The explain_output_message function is used to print text. It is printed via the registered output class, see
explain_output_register(3) for how.

text The text of the message to be printed. It has not been wrapped (yet).

explain_output_error
void explain_output_error(const char *fmt, ...);

The explain_output_error function is used to print a formatted error message.The printing is done via the
explain_output_message(3) function.

fmt The format text of the message to be printed. Seeprintf(3) for more information.

explain_output_error_and_die
void explain_output_error_and_die(const char *fmt, ...);

The explain_output_error_and_die function is used to print text, and then terminate immediately. The
printing is done via theexplain_output_message(3) function, process termination is via the
explain_output_exit_failure(3) function.

fmt The format text of the message to be printed. See printf(3) for more information.

explain_output_warning
void explain_output_warning(const char *fmt, ...);

The explain_output_warning function is used to print a formatted error message, including the word
“warning”. Theprinting is done via theexplain_output_message(3) function.

fmt The format text of the message to be printed. Seeprintf(3) for more information.

explain_output_exit
void explain_output_exit(int status);

The explain_output_exit function is used to terminate execution. It is executed via the registered output
class,explain_output_register(3) for how.

status The exist status requested.

explain_output_exit_failure
void explain_output_exit_failure(void);

The explain_output_exit_failure function is used to terminate execution, with exit status EXIT_FAILURE.
It is executed via the registered output class, seeexplain_output_register(3) for how.

explain_option_hanging_indent_set
void explain_option_hanging_indent_set(int columns);

The explain_option_hanging_indent_set function is used to cause the output wrapping to use hanging
indents. Bydefault no hanging indent is used, but this can sometimes obfuscate the end of one error
message and the beginning of another. A hanging indent results in continuation lines starting with white
space, similar to RFC822 headers.

This can be set using the “hanging-indent= n” string in the EXPLAIN_OPTIONS environment
variable. Seeexplain(3) for more information.

589

explain_output(3) explain_output(3)

Using this function will override any environment variable setting.

columns The number of columns of hanging indent to be used.A value of 0 means no hanging indent (all
lines flush with left margin). A common value to use is 4: it doesn’t consume too much of each
line, and it is a clear indent.

OUTPUT REDIRECTION
It is possible to change how and where libexplain sends its output, and even how it calls the exit(2)
function. This functionality is used by theexplain_*_or_die and explain_*_on_error
functions.

By default, libexplain will wrap and print error messages on stderr, and call theexit(2) system call to
terminate execution.

Clients of the libexplain library may choose to use some message handling facilities provided by libexplain,
or they may choose to implement their own.

syslog
To cause all output to be sent to syslog, use

explain_output_register(explain_output_syslog_new());

This is useful for servers and daemons.

stderr and syslog
The “tee” output class can be used to duplicate output.To cause all output to be sent to both
stderr and syslog, use

explain_output_register
(

explain_output_tee_new
(

explain_output_stderr_new(),
explain_output_syslog_new()

)
);

If you need more than two, use several instances of “tee”, cascaded.

stderr and a file
To cause all output to be sent to both stderr and a regular file, use

explain_output_register
(

explain_output_tee_new
(

explain_output_stderr_new(),
explain_output_file_new(filename, 0)

)
);

See the<libexplain/output.h> fi le for extensive documentation.

explain_output_new
explain_output_t *explain_output_new(const explain_output_vtable_t
*vtable);

The explain_output_new function may be used to create a new dynamically allocated instance of
explain_output_t.

vtable The struct containing the pointers to the methods of the derived class.

returns NULL on error (i.e. malloc failed), or a pointer to a new dynamically allocated instance of the
class.

590

explain_output(3) explain_output(3)

explain_output_stderr_new
explain_output_t *explain_output_stderr_new(void);

The explain_output_stderr_new function may be used to create a new dynamically allocated instance of an
explain_output_t class that writes to stderr, and exits viaexit(2);

This is the default output handler.

returns NULL on error (i.e. malloc failed), or a pointer to a new dynamically allocated instance of the
stderr class.

explain_output_syslog_new
explain_output_t *explain_output_syslog_new(void);

The explain_output_syslog_new function may be used to create a new dynamically allocated instance of an
explain_output_t class that writes to syslog, and exits viaexit(2);

The following values are used:

option = 0
facility = LOG_USER
level = LOG_ERR

Seesyslog(3) for more information.

returns NULL on error (i.e.malloc(3) failed), or a pointer to a new dynamically allocated instance of the
syslog class.

explain_output_syslog_new1
explain_output_t *explain_output_syslog_new1(int level);

The explain_output_syslog_new1 function may be used to create a new dynamically allocated instance of
an explain_output_t class that writes to syslog, and exits viaexit(2);

The following values are used:

option = 0
facility = LOG_USER

Seesyslog(3) for more information.

level The syslog level to be used, see syslog(3) for a definition.

returns NULL on error (i.e.malloc(3) failed), or a pointer to a new dynamically allocated instance of the
syslog class.

explain_output_syslog_new3
explain_output_t *explain_output_syslog_new3(int option, int facility,
int level);

The explain_output_syslog_new3 function may be used to create a new dynamically allocated instance of
an explain_output_t class that writes to syslog, and exits viaexit(2);

If you want different facilities or levels, create multiple instances.

option The syslog option to be used, see syslog(3) for a definition.

facility The syslog facility to be used, see syslog(3) for a definition.

level The syslog level to be used, see syslog(3) for a definition.

returns NULL on error (i.e.malloc(3) failed), or a pointer to a new dynamically allocated instance of the
syslog class.

explain_output_file_new
explain_output_t *explain_output_file_new(const char *filename, int
append);

The explain_output_file_new function may be used to create a new dynamically allocated instance of an

591

explain_output(3) explain_output(3)

explain_output_t class that writes to a file, and exits viaexit(2).

filename The file to be opened and written to.

append true (non-zero) if messages are to be appended to the file, false (zero) if the file is to be replaced
with new contents.

returns NULL on error (i.e.malloc(3) or open(2) failed), or a pointer to a new dynamically allocated
instance of the syslog class.

explain_output_tee_new
explain_output_t *explain_output_tee_new(explain_output_t *first,
explain_output_t *second);

The explain_output_tee_new function may be used to create a new dynamically allocated instance of an
explain_output_t class that writes totwo other output classes.

first The first output class to write to.

second The second output class to write to.

returns NULL on error (i.e.malloc(3) failed), or a pointer to a new dynamically allocated instance of the
syslog class.

The output subsystem will “own” thefirst and secondobjects after this call.You may not make any
reference to these pointers ever again. The output subsystem will destroy these objects and free the
memory when it feels like it.

explain_output_register
void explain_output_register(explain_output_t *op);

The explain_output_register function is used to change libexplain’s default output handling facilities with
something else. The NULL pointer restores libexplain’s default processing.

If no output class is registered, the default is to wrap and print to stderr, and to exit via theexit(2) system
call.

op Pointer to the explain_output_t instance to be operated on.

The output subsystem will “own” the pointer after this call.You may not make any reference to this pointer
ev er again. Theoutput subsystem will destroy the object and free the memory when it feels like it.

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

592

explain_pathconf(3) explain_pathconf(3)

NAME
explain_pathconf − explain pathconf(3) errors

SYNOPSIS
#include <libexplain/pathconf.h>

const char *explain_pathconf(const char *pathname, int name);
const char *explain_errno_pathconf(int errnum, const char *pathname, int name);
void explain_message_pathconf(char *message, int message_size, const char *pathname, int name);
void explain_message_errno_pathconf(char *message, int message_size, int errnum, const char *pathname,
int name);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thepathconf(3) system call.

explain_pathconf
const char *explain_pathconf(const char *pathname, int name);

The explain_pathconf function is used to obtain an explanation of an error returned by thepathconf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (pathconf(pathname, name) < 0)
{

fprintf(stderr, "%s\n", explain_pathconf(pathname, name));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pathconf_or_die(3) function.

pathname
The original pathname, exactly as passed to thepathconf(3) system call.

name The original name, exactly as passed to thepathconf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_pathconf
const char *explain_errno_pathconf(int errnum, const char *pathname, int name);

The explain_errno_pathconf function is used to obtain an explanation of an error returned by the
pathconf(3) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (pathconf(pathname, name) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_pathconf(err, pathname, name));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pathconf_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

593

explain_pathconf(3) explain_pathconf(3)

explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thepathconf(3) system call.

name The original name, exactly as passed to thepathconf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_pathconf
void explain_message_pathconf(char *message, int message_size, const char *pathname, int name);

Theexplain_message_pathconffunction may be used to obtain an explanation of an error returned by the
pathconf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (pathconf(pathname, name) < 0)
{

char message[3000];
explain_message_pathconf(message, sizeof(message), pathname, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pathconf_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thepathconf(3) system call.

name The original name, exactly as passed to thepathconf(3) system call.

explain_message_errno_pathconf
void explain_message_errno_pathconf(char *message, int message_size, int errnum, const char *pathname,
int name);

Theexplain_message_errno_pathconffunction may be used to obtain an explanation of an error returned
by thepathconf(3) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (pathconf(pathname, name) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_pathconf(message, sizeof(message), err,

pathname, name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pathconf_or_die(3) function.

594

explain_pathconf(3) explain_pathconf(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thepathconf(3) system call.

name The original name, exactly as passed to thepathconf(3) system call.

SEE ALSO
pathconf(3)

get configuration values for files

explain_pathconf_or_die(3)
get configuration values for files and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

595

explain_pathconf_or_die(3) explain_pathconf_or_die(3)

NAME
explain_pathconf_or_die − get configuration values and report errors

SYNOPSIS
#include <libexplain/pathconf.h>

long explain_pathconf_or_die(const char *pathname, int name);

DESCRIPTION
The explain_pathconf_or_die function is used to call thepathconf(3) system call. On failure an
explanation will be printed tostderr, obtained fromexplain_pathconf(3), and then the process terminates by
callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
long value = explain_pathconf_or_die(pathname, name);

Note that a−1 return value is still possible, meaning the system does not have a limit for the requested
resource.

pathname
The pathname, exactly as to be passed to thepathconf(3) system call.

name The name, exactly as to be passed to thepathconf(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
pathconf(3)

get configuration values for files

explain_pathconf(3)
explainpathconf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

596

explain_pclose(3) explain_pclose(3)

NAME
explain_pclose − explain pclose(3) errors

SYNOPSIS
#include <libexplain/pclose.h>

const char *explain_pclose(FILE *fp);
const char *explain_errno_pclose(int errnum, FILE *fp);
void explain_message_pclose(char *message, int message_size, FILE *fp);
void explain_message_errno_pclose(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thepclose(3) system call.

explain_pclose
const char *explain_pclose(FILE *fp);

The explain_pclosefunction is used to obtain an explanation of an error returned by thepclose(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (pclose(fp) < 0)
{

fprintf(stderr, "%s\n", explain_pclose(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pclose_or_die(3) function.

fp The original fp, exactly as passed to thepclose(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_pclose
const char *explain_errno_pclose(int errnum, FILE *fp);

The explain_errno_pclosefunction is used to obtain an explanation of an error returned by thepclose(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (pclose(fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_pclose(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pclose_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thepclose(3) system call.

597

explain_pclose(3) explain_pclose(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_pclose
void explain_message_pclose(char *message, int message_size, FILE *fp);

The explain_message_pclosefunction may be used to obtain an explanation of an error returned by the
pclose(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (pclose(fp) < 0)
{

char message[3000];
explain_message_pclose(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pclose_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thepclose(3) system call.

explain_message_errno_pclose
void explain_message_errno_pclose(char *message, int message_size, int errnum, FILE *fp);

Theexplain_message_errno_pclosefunction may be used to obtain an explanation of an error returned by
the pclose(3) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (pclose(fp) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_pclose(message, sizeof(message), err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pclose_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

598

explain_pclose(3) explain_pclose(3)

fp The original fp, exactly as passed to thepclose(3) system call.

SEE ALSO
pclose(3)

process I/O

explain_pclose_or_die(3)
process I/O and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

599

explain_pclose_or_die(3) explain_pclose_or_die(3)

NAME
explain_pclose_or_die − process I/O and report errors

SYNOPSIS
#include <libexplain/pclose.h>

int explain_pclose_or_die(FILE *fp);
int explain_pclose_success(FILE *fp);
void explain_pclose_success_or_die(FILE *fp);

DESCRIPTION
These functions may be used to wait for program termination, and then reprt errors returned by the
pclose(3) system call.

explain_pclose_or_die
int explain_pclose_or_die(FILE *fp);

The explain_pclose_or_diefunction is used to call thepclose(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_pclose(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int status = explain_pclose_or_die(fp);

fp The fp, exactly as to be passed to thepclose(3) system call.

Returns: This function only returns on success, seepclose(3) for more information. On failure, prints an
explanation and exits.

explain_pclose_success_or_die
void explain_pclose_success_or_die(FILE *);

The explain_pclose_success_or_diefunction is used to call thepclose(3) system call. On failure,
including any exit status other than EXIT_SUCCESS, an explanation will be printed tostderr, obtained
from explain_pclose(3), and then the process terminates by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_pclose_success_or_die(fp);

fp The fp, exactly as to be passed to thepclose(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

explain_pclose_success
int explain_pclose_success(FILE *fp);

The explain_pclose_successfunction is used to call thepclose(3) system call. On failure, including any
exit status other than EXIT_SUCCESS, an explanation will be printed tostderr, obtained from
explain_pclose(3). However, the priniting of an error message doesnot also causeexit(2) to be called.

This function is intended to be used in a fashion similar to the following example:
int status = explain_pclose_success(command);

fp The fp, exactly as to be passed to thepclose(3) system call.

Returns: the value returned by thepclose(3) system call.In all cases other than EXIT_SUCCESS, an error
message will also have been printed to stderr.

SEE ALSO
pclose(3)

process I/O

explain_pclose(3)
explainpclose(3) errors

600

explain_pclose_or_die(3) explain_pclose_or_die(3)

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

601

explain_pipe2(3) explain_pipe2(3)

NAME
explain_pipe2 − explainpipe2(2) errors

SYNOPSIS
#include <libexplain/pipe2.h>

const char *explain_pipe2(int *fildes, int flags);
const char *explain_errno_pipe2(int errnum, int *fildes, int flags);
void explain_message_pipe2(char *message, int message_size, int *fildes, int flags);
void explain_message_errno_pipe2(char *message, int message_size, int errnum, int *fildes, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thepipe2(2) system call.

explain_pipe2
const char *explain_pipe2(int *fildes, int flags);

The explain_pipe2 function is used to obtain an explanation of an error returned by thepipe2(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thepipe2(2) system call.

flags The original flags, exactly as passed to thepipe2(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (pipe2(fildes, flags) < 0)
{

fprintf(stderr, "%s\n", explain_pipe2(fildes, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_pipe2_or_die(3) function.

explain_errno_pipe2
const char *explain_errno_pipe2(int errnum, int *fildes, int flags);

The explain_errno_pipe2 function is used to obtain an explanation of an error returned by thepipe2(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thepipe2(2) system call.

flags The original flags, exactly as passed to thepipe2(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

602

explain_pipe2(3) explain_pipe2(3)

if (pipe2(fildes, flags) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_pipe2(err, fildes,
flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_pipe2_or_die(3) function.

explain_message_pipe2
void explain_message_pipe2(char *message, int message_size, int *fildes, int flags);

Theexplain_message_pipe2function is used to obtain an explanation of an error returned by thepipe2(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thepipe2(2) system call.

flags The original flags, exactly as passed to thepipe2(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (pipe2(fildes, flags) < 0)
{

char message[3000];
explain_message_pipe2(message, sizeof(message), fildes,
flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_pipe2_or_die(3) function.

explain_message_errno_pipe2
void explain_message_errno_pipe2(char *message, int message_size, int errnum, int *fildes, int flags);

The explain_message_errno_pipe2function is used to obtain an explanation of an error returned by the
pipe2(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thepipe2(2) system call.

flags The original flags, exactly as passed to thepipe2(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (pipe2(fildes, flags) < 0)
{

603

explain_pipe2(3) explain_pipe2(3)

int err = errno;
char message[3000];

explain_message_errno_pipe2(message, sizeof(message), err,
fildes, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_pipe2_or_die(3) function.

SEE ALSO
pipe2(2) create pipe

explain_pipe2_or_die(3)
create pipe and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

604

explain_pipe2_or_die(3) explain_pipe2_or_die(3)

NAME
explain_pipe2_or_die − create pipe and report errors

SYNOPSIS
#include <libexplain/pipe2.h>

void explain_pipe2_or_die(int *fildes, int flags);
int explain_pipe2_on_error(int *fildes, int flags);

DESCRIPTION
Theexplain_pipe2_or_diefunction is used to call thepipe2(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_pipe2(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_pipe2_on_error function is used to call thepipe2(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_pipe2(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thepipe2(2) system call.

flags The flags, exactly as to be passed to thepipe2(2) system call.

RETURN VALUE
Theexplain_pipe2_or_diefunction only returns on success, seepipe2(2) for more information. On failure,
prints an explanation and exits, it does not return.

The explain_pipe2_on_error function always returns the value return by the wrappedpipe2(2) system
call.

EXAMPLE
Theexplain_pipe2_or_diefunction is intended to be used in a fashion similar to the following example:

explain_pipe2_or_die(fildes, flags);

SEE ALSO
pipe2(2) create pipe

explain_pipe2(3)
explainpipe2(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

605

explain_pipe(3) explain_pipe(3)

NAME
explain_pipe − explain pipe(2) errors

SYNOPSIS
#include <libexplain/pipe.h>

const char *explain_pipe(int *pipefd);
const char *explain_errno_pipe(int errnum, int *pipefd);
void explain_message_pipe(char *message, int message_size, int *pipefd);
void explain_message_errno_pipe(char *message, int message_size, int errnum, int *pipefd);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thepipe(2) system call.

explain_pipe
const char *explain_pipe(int *pipefd);

Theexplain_pipe function is used to obtain an explanation of an error returned by thepipe(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (pipe(pipefd) < 0)
{

fprintf(stderr, "%s\n", explain_pipe(pipefd));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pipe_or_die(3) function.

pipefd The original pipefd, exactly as passed to thepipe(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_pipe
const char *explain_errno_pipe(int errnum, int *pipefd);

The explain_errno_pipe function is used to obtain an explanation of an error returned by thepipe(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (pipe(pipefd) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_pipe(err, pipefd));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pipe_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pipefd The original pipefd, exactly as passed to thepipe(2) system call.

606

explain_pipe(3) explain_pipe(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_pipe
void explain_message_pipe(char *message, int message_size, int *pipefd);

The explain_message_pipefunction may be used toobtain an explanation of an error returned by the
pipe(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (pipe(pipefd) < 0)
{

char message[3000];
explain_message_pipe(message, sizeof(message), pipefd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pipe_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pipefd The original pipefd, exactly as passed to thepipe(2) system call.

explain_message_errno_pipe
void explain_message_errno_pipe(char *message, int message_size, int errnum, int *pipefd);

The explain_message_errno_pipefunction may be used to obtain an explanation of an error returned by
the pipe(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (pipe(pipefd) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_pipe(message, sizeof(message), err, pipefd);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pipe_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

607

explain_pipe(3) explain_pipe(3)

pipefd The original pipefd, exactly as passed to thepipe(2) system call.

SEE ALSO
pipe(2) create pipe

explain_pipe_or_die(3)
create pipe and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

608

explain_pipe_or_die(3) explain_pipe_or_die(3)

NAME
explain_pipe_or_die − create pipe and report errors

SYNOPSIS
#include <libexplain/pipe.h>

void explain_pipe_or_die(int *pipefd);

DESCRIPTION
Theexplain_pipe_or_diefunction is used to call thepipe(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_pipe(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_pipe_or_die(pipefd);

pipefd The pipefd, exactly as to be passed to thepipe(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
pipe(2) create pipe

explain_pipe(3)
explainpipe(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

609

explain_poll(3) explain_poll(3)

NAME
explain_poll − explainpoll(2) errors

SYNOPSIS
#include <libexplain/poll.h>

const char *explain_poll(struct pollfd *fds, int nfds, int timeout);
const char *explain_errno_poll(int errnum, struct pollfd *fds, int nfds, int timeout);
void explain_message_poll(char *message, int message_size, struct pollfd *fds, int nfds, int timeout);
void explain_message_errno_poll(char *message, int message_size, int errnum, struct pollfd *fds, int nfds,
int timeout);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thepoll(2) system call.

explain_poll
const char *explain_poll(struct pollfd *fds, int nfds, int timeout);

The explain_poll function is used to obtain an explanation of an error returned by thepoll(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fds The original fds, exactly as passed to thepoll(2) system call.

nfds The original nfds, exactly as passed to thepoll(2) system call.

timeout The original timeout, exactly as passed to thepoll(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = poll(fds, nfds, timeout);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_poll(fds, nfds, timeout));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_poll_or_die(3) function.

explain_errno_poll
const char *explain_errno_poll(int errnum, struct pollfd *fds, int nfds, int timeout);

Theexplain_errno_poll function is used to obtain an explanation of an error returned by thepoll(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fds The original fds, exactly as passed to thepoll(2) system call.

nfds The original nfds, exactly as passed to thepoll(2) system call.

timeout The original timeout, exactly as passed to thepoll(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

610

explain_poll(3) explain_poll(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = poll(fds, nfds, timeout);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_poll(err, fds, nfds,
timeout));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_poll_or_die(3) function.

explain_message_poll
void explain_message_poll(char *message, int message_size, struct pollfd *fds, int nfds, int timeout);

The explain_message_pollfunction is used to obtain an explanation of an error returned by thepoll(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fds The original fds, exactly as passed to thepoll(2) system call.

nfds The original nfds, exactly as passed to thepoll(2) system call.

timeout The original timeout, exactly as passed to thepoll(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = poll(fds, nfds, timeout);
if (result < 0)
{

char message[3000];
explain_message_poll(message, sizeof(message), fds, nfds,
timeout);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_poll_or_die(3) function.

explain_message_errno_poll
void explain_message_errno_poll(char *message, int message_size, int errnum, struct pollfd *fds, int nfds,
int timeout);

The explain_message_errno_pollfunction is used to obtain an explanation of an error returned by the
poll(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

611

explain_poll(3) explain_poll(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fds The original fds, exactly as passed to thepoll(2) system call.

nfds The original nfds, exactly as passed to thepoll(2) system call.

timeout The original timeout, exactly as passed to thepoll(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = poll(fds, nfds, timeout);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_poll(message, sizeof(message), err, fds,
nfds, timeout);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_poll_or_die(3) function.

SEE ALSO
poll(2) wait for some event on a file descriptor

explain_poll_or_die(3)
wait for some event on a file descriptor and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

612

explain_poll_or_die(3) explain_poll_or_die(3)

NAME
explain_poll_or_die − wait for some event on file descriptor and report errors

SYNOPSIS
#include <libexplain/poll.h>

int explain_poll_or_die(struct pollfd *fds, int nfds, int timeout);
int explain_poll_on_error(struct pollfd *fds, int nfds, int timeout);

DESCRIPTION
Theexplain_poll_or_die function is used to call thepoll(2) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_poll(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_poll_on_error function is used to call thepoll(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_poll(3) function, but still returns to the caller.

fds The fds, exactly as to be passed to thepoll(2) system call.

nfds The nfds, exactly as to be passed to thepoll(2) system call.

timeout The timeout, exactly as to be passed to thepoll(2) system call.

RETURN VALUE
The explain_poll_or_die function only returns on success, seepoll(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_poll_on_error function always returns the value return by the wrappedpoll(2) system call.

EXAMPLE
Theexplain_poll_or_diefunction is intended to be used in a fashion similar to the following example:

int result = explain_poll_or_die(fds, nfds, timeout);

SEE ALSO
poll(2) wait for some event on a file descriptor

explain_poll(3)
explainpoll(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

613

explain_popen(3) explain_popen(3)

NAME
explain_popen − explain popen(3) errors

SYNOPSIS
#include <libexplain/popen.h>

const char *explain_popen(const char *command, const char *flags);
const char *explain_errno_popen(int errnum, const char *command, const char *flags);
void explain_message_popen(char *message, int message_size, const char *command, const char *flags);
void explain_message_errno_popen(char *message, int message_size, int errnum, const char *command,
const char *flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thepopen(3) system call.

explain_popen
const char *explain_popen(const char *command, const char *flags);

The explain_popenfunction is used to obtain an explanation of an error returned by thepopen(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = popen(command, flags);
if (!fp)
{

fprintf(stderr, "%s\n", explain_popen(command, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_popen_or_die(3) function.

command
The original command, exactly as passed to thepopen(3) system call.

flags The original flags, exactly as passed to thepopen(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_popen
const char *explain_errno_popen(int errnum, const char *command, const char *flags);

The explain_errno_popenfunction is used to obtain an explanation of an error returned by thepopen(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = popen(command, flags);
if (!fp)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_popen(err, command, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_popen_or_die(3) function.

614

explain_popen(3) explain_popen(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

command
The original command, exactly as passed to thepopen(3) system call.

flags The original flags, exactly as passed to thepopen(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_popen
void explain_message_popen(char *message, int message_size, const char *command, const char *flags);

The explain_message_popenfunction may be used to obtain an explanation of an error returned by the
popen(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = popen(command, flags);
if (!fp)
{

char message[3000];
explain_message_popen(message, sizeof(message), command, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_popen_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

command
The original command, exactly as passed to thepopen(3) system call.

flags The original flags, exactly as passed to thepopen(3) system call.

explain_message_errno_popen
void explain_message_errno_popen(char *message, int message_size, int errnum, const char *command,
const char *flags);

Theexplain_message_errno_popenfunction may be used to obtain an explanation of an error returned by
the popen(3) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
FILE *fp = popen(command, flags);
if (!fp)
{

int err = errno;
char message[3000];
explain_message_errno_popen(message, sizeof(message),

err, command, flags);

615

explain_popen(3) explain_popen(3)

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_popen_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

command
The original command, exactly as passed to thepopen(3) system call.

flags The original flags, exactly as passed to thepopen(3) system call.

SEE ALSO
popen(3)

process I/O

explain_popen_or_die(3)
process I/O and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

616

explain_popen_or_die(3) explain_popen_or_die(3)

NAME
explain_popen_or_die − process I/O and report errors

SYNOPSIS
#include <libexplain/popen.h>

FILE *explain_popen_or_die(const char *command, const char *flags);

DESCRIPTION
The explain_popen_or_diefunction is used to call thepopen(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_popen(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
FILE *fp = explain_popen_or_die(command, flags);

command
The command, exactly as to be passed to thepopen(3) system call.

flags The flags, exactly as to be passed to thepopen(3) system call.

Returns: This function only returns on success, seepopen(3) for more information. On failure, prints an
explanation and exits.

SEE ALSO
popen(3)

process I/O

explain_popen(3)
explainpopen(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

617

explain_pread(3) explain_pread(3)

NAME
explain_pread − explain pread(2) errors

SYNOPSIS
#include <libexplain/pread.h>

const char *explain_pread(int fildes, void *data, size_t data_size, off_t offset);
const char *explain_errno_pread(int errnum, int fildes, void *data, size_t data_size, off_t offset);
void explain_message_pread(char *message, int message_size, int fildes, void *data, size_t data_size, off_t
offset);
void explain_message_errno_pread(char *message, int message_size, int errnum, int fildes, void *data,
size_t data_size, off_t offset);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thepread(2) system call.

explain_pread
const char *explain_pread(int fildes, void *data, size_t data_size, off_t offset);

The explain_pread function is used to obtain an explanation of an error returned by thepread(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thepread(2) system call.

data The original data, exactly as passed to thepread(2) system call.

data_size
The original data_size, exactly as passed to thepread(2) system call.

offset The original offset, exactly as passed to thepread(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = pread(fildes, data, data_size, offset);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_pread(fildes, data, data_size,
offset));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pread_or_die(3) function.

explain_errno_pread
const char *explain_errno_pread(int errnum, int fildes, void *data, size_t data_size, off_t offset);

The explain_errno_pread function is used to obtain an explanation of an error returned by thepread(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

618

explain_pread(3) explain_pread(3)

fildes The original fildes, exactly as passed to thepread(2) system call.

data The original data, exactly as passed to thepread(2) system call.

data_size
The original data_size, exactly as passed to thepread(2) system call.

offset The original offset, exactly as passed to thepread(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = pread(fildes, data, data_size, offset);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_pread(err, fildes, data,
data_size, offset));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pread_or_die(3) function.

explain_message_pread
void explain_message_pread(char *message, int message_size, int fildes, void *data, size_t data_size, off_t
offset);

Theexplain_message_preadfunction is used to obtain an explanation of an error returned by thepread(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thepread(2) system call.

data The original data, exactly as passed to thepread(2) system call.

data_size
The original data_size, exactly as passed to thepread(2) system call.

offset The original offset, exactly as passed to thepread(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = pread(fildes, data, data_size, offset);
if (result < 0)
{

char message[3000];
explain_message_pread(message, sizeof(message), fildes, data,
data_size, offset);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pread_or_die(3) function.

619

explain_pread(3) explain_pread(3)

explain_message_errno_pread
void explain_message_errno_pread(char *message, int message_size, int errnum, int fildes, void *data,
size_t data_size, off_t offset);

The explain_message_errno_preadfunction is used to obtain an explanation of an error returned by the
pread(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thepread(2) system call.

data The original data, exactly as passed to thepread(2) system call.

data_size
The original data_size, exactly as passed to thepread(2) system call.

offset The original offset, exactly as passed to thepread(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = pread(fildes, data, data_size, offset);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_pread(message, sizeof(message), err,
fildes, data, data_size, offset);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pread_or_die(3) function.

SEE ALSO
pread(2) read from or write to a file descriptor at a given offset

explain_pread_or_die(3)
read from or write to a file descriptor at a given offset and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

620

explain_pread_or_die(3) explain_pread_or_die(3)

NAME
explain_pread_or_die − seek and read from a file descriptor and report errors

SYNOPSIS
#include <libexplain/pread.h>

ssize_t explain_pread_or_die(int fildes, void *data, size_t data_size, off_t offset);
ssize_t explain_pread_on_error(int fildes, void *data, size_t data_size, off_t offset))

DESCRIPTION
Theexplain_pread_or_diefunction is used to call thepread(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_pread(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_pread_on_error function is used to call thepread(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_pread(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thepread(2) system call.

data The data, exactly as to be passed to thepread(2) system call.

data_size
The data_size, exactly as to be passed to thepread(2) system call.

offset The offset, exactly as to be passed to thepread(2) system call.

RETURN VALUE
The explain_pread_or_die function only returns on success, seepread(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_pread_on_error function always returns the value return by the wrappedpread(2) system
call.

EXAMPLE
Theexplain_pread_or_diefunction is intended to be used in a fashion similar to the following example:

ssize_t result = explain_pread_or_die(fildes, data, data_size, offset);

SEE ALSO
pread(2) read from a file descriptor at a given offset

explain_pread(3)
explainpread(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

621

explain_printf(3) explain_printf(3)

NAME
explain_printf − explainprintf(3) errors

SYNOPSIS
#include <libexplain/printf.h>

const char *explain_printf(const char *format);
const char *explain_errno_printf(int errnum, const char *format);
void explain_message_printf(char *message, int message_size, const char *format);
void explain_message_errno_printf(char *message, int message_size, int errnum, const char *format);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theprintf(3) system call.

explain_printf
const char *explain_printf(const char *format);

The explain_printf function is used to obtain an explanation of an error returned by theprintf(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

format The original format, exactly as passed to theprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = printf(format);
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_printf(format));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_printf_or_die(3) function.

explain_errno_printf
const char *explain_errno_printf(int errnum, const char *format);

The explain_errno_printf function is used to obtain an explanation of an error returned by theprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

format The original format, exactly as passed to theprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

622

explain_printf(3) explain_printf(3)

errno = 0;
int result = printf(format);
if (result < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_printf(err, format));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_printf_or_die(3) function.

explain_message_printf
void explain_message_printf(char *message, int message_size, const char *format);

Theexplain_message_printffunction is used to obtain an explanation of an error returned by theprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

format The original format, exactly as passed to theprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = printf(format);
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_printf(message, sizeof(message), format);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_printf_or_die(3) function.

explain_message_errno_printf
void explain_message_errno_printf(char *message, int message_size, int errnum, const char *format);

The explain_message_errno_printffunction is used to obtain an explanation of an error returned by the
printf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

format The original format, exactly as passed to theprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = printf(format);
if (result < 0 && errno != 0)

623

explain_printf(3) explain_printf(3)

{
int err = errno;
char message[3000];

explain_message_errno_printf(message, sizeof(message), err,
format);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_printf_or_die(3) function.

SEE ALSO
printf(3) formatted output conversion

explain_printf_or_die(3)
formatted output conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

624

explain_printf_or_die(3) explain_printf_or_die(3)

NAME
explain_printf_or_die − formatted output conversion and report errors

SYNOPSIS
#include <libexplain/printf.h>

int explain_printf_or_die(const char *format);
int explain_printf_on_error(const char *format);

DESCRIPTION
Theexplain_printf_or_die function is used to call theprintf(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_printf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_printf_on_error function is used to call theprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_printf(3) function, but still returns to the caller.

format The format, exactly as to be passed to theprintf(3) system call.

RETURN VALUE
The explain_printf_or_die function only returns on success, seeprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_printf_on_error function always returns the value return by the wrappedprintf(3) system
call.

EXAMPLE
Theexplain_printf_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_printf_or_die(format);

SEE ALSO
printf(3) formatted output conversion

explain_printf(3)
explainprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

625

explain_program_name(3) explain_program_name(3)

NAME
explain_program_name − manipulate the program name

SYNOPSIS
#include <libexplain/libexplain.h>

const char *explain_program_name_get(void);
void explain_program_name_set(const char *name);
void explain_program_name_assemble(int yesno);

DESCRIPTION
These functions may be used to manipulate libexplain’s idea of the command name of the current process,
and whether or not that name is included in error messages.

explain_program_name_get
const char *explain_program_name_get(void);

The explain_program_name_getfunction may be used to obtain the command name of the calling
process. Dependingon how capable/proc is on your system, or, failing that, how capablelsof(1) is on
your system, this may or may not produce a sensible result. It works well on Linux.

Returns: pointer to string containing the command name (no slashes) of the calling process.

explain_program_name_set
void explain_program_name_set(const char *name);

Theexplain_program_name_setfunction may be used to set the libexplain libraries’ idea of the command
name of the calling process, setting the string to be returned by theexplain_program_name_get(3) function.
This overrides the automatic behavior, which can be quite desirable in commands that can be invoked with
more than one name,e.g.if they are a hard link synonym.

This also sets the option to include the program name in all of the error messages issued by the
explain_*_or_die(3) functions.

name The name of the calling process.Only the basename will be used if a path containing slashes is
given.

explain_program_name_assemble
void explain_program_name_assemble(int yesno);

The explain_program_name_assemble function is used to control whether or not the name of the calling
process is to be included in error messages issued by theexplain_*_or_die(3) functions. If not explicitly
set, is controlled by the EXPLAIN_OPTIONS environment variable, or defaults to true if not set there
either.

yesno non-zero (true) to have program name included, zero (false) to have program name excluded.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

626

explain_ptrace(3) explain_ptrace(3)

NAME
explain_ptrace − explainptrace(2) errors

SYNOPSIS
#include <libexplain/ptrace.h>

const char *explain_ptrace(int request, pid_t pid, void *addr, void *data);
const char *explain_errno_ptrace(int errnum, int request, pid_t pid, void *addr, void *data);
void explain_message_ptrace(char *message, int message_size, int request, pid_t pid, void *addr, void
*data);
void explain_message_errno_ptrace(char *message, int message_size, int errnum, int request, pid_t pid,
void *addr, void *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theptrace(2) system call.

explain_ptrace
const char *explain_ptrace(int request, pid_t pid, void *addr, void *data);

Theexplain_ptrace function is used to obtain an explanation of an error returned by theptrace(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

request The original request, exactly as passed to theptrace(2) system call.

pid The original pid, exactly as passed to theptrace(2) system call.

addr The original addr, exactly as passed to theptrace(2) system call.

data The original data, exactly as passed to theptrace(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ptrace(request, pid, addr, data);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_ptrace(request, pid, addr,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_ptrace_or_die(3) function.

explain_errno_ptrace
const char *explain_errno_ptrace(int errnum, int request, pid_t pid, void *addr, void *data);

The explain_errno_ptrace function is used to obtain an explanation of an error returned by theptrace(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

request The original request, exactly as passed to theptrace(2) system call.

627

explain_ptrace(3) explain_ptrace(3)

pid The original pid, exactly as passed to theptrace(2) system call.

addr The original addr, exactly as passed to theptrace(2) system call.

data The original data, exactly as passed to theptrace(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ptrace(request, pid, addr, data);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ptrace(err, request,
pid, addr, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_ptrace_or_die(3) function.

explain_message_ptrace
void explain_message_ptrace(char *message, int message_size, int request, pid_t pid, void *addr, void
*data);

The explain_message_ptracefunction is used to obtain an explanation of an error returned by the
ptrace(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

request The original request, exactly as passed to theptrace(2) system call.

pid The original pid, exactly as passed to theptrace(2) system call.

addr The original addr, exactly as passed to theptrace(2) system call.

data The original data, exactly as passed to theptrace(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ptrace(request, pid, addr, data);
if (result < 0)
{

char message[3000];
explain_message_ptrace(message, sizeof(message), request, pid,
addr, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_ptrace_or_die(3) function.

explain_message_errno_ptrace
void explain_message_errno_ptrace(char *message, int message_size, int errnum, int request, pid_t pid,
void *addr, void *data);

628

explain_ptrace(3) explain_ptrace(3)

The explain_message_errno_ptracefunction is used to obtain an explanation of an error returned by the
ptrace(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

request The original request, exactly as passed to theptrace(2) system call.

pid The original pid, exactly as passed to theptrace(2) system call.

addr The original addr, exactly as passed to theptrace(2) system call.

data The original data, exactly as passed to theptrace(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = ptrace(request, pid, addr, data);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_ptrace(message, sizeof(message), err,
request, pid, addr, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_ptrace_or_die(3) function.

SEE ALSO
ptrace(2)

process trace

explain_ptrace_or_die(3)
process trace and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

629

explain_ptrace_or_die(3) explain_ptrace_or_die(3)

NAME
explain_ptrace_or_die − process trace and report errors

SYNOPSIS
#include <libexplain/ptrace.h>

long explain_ptrace_or_die(int request, pid_t pid, void *addr, void *data);
long explain_ptrace_on_error(int request, pid_t pid, void *addr, void *data);

DESCRIPTION
The explain_ptrace_or_die function is used to call theptrace(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_ptrace(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_ptrace_on_error function is used to call theptrace(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_ptrace(3) function, but still returns to the caller.

request The request, exactly as to be passed to theptrace(2) system call.

pid The pid, exactly as to be passed to theptrace(2) system call.

addr The addr, exactly as to be passed to theptrace(2) system call.

data The data, exactly as to be passed to theptrace(2) system call.

RETURN VALUE
The explain_ptrace_or_die function only returns on success, seeptrace(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_ptrace_on_error function always returns the value return by the wrappedptrace(2) system
call.

EXAMPLE
Theexplain_ptrace_or_diefunction is intended to be used in a fashion similar to the following example:

long result = explain_ptrace_or_die(request, pid, addr, data);

SEE ALSO
ptrace(2)

process trace

explain_ptrace(3)
explainptrace(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

630

explain_putc(3) explain_putc(3)

NAME
explain_putc − explain putc(3) errors

SYNOPSIS
#include <libexplain/putc.h>

const char *explain_putc(int c, FILE *fp);
const char *explain_errno_putc(int errnum, int c, FILE *fp);
void explain_message_putc(char *message, int message_size, int c, FILE *fp);
void explain_message_errno_putc(char *message, int message_size, int errnum, int c, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theputc(3) system call.

explain_putc
const char *explain_putc(int c, FILE *fp);

Theexplain_putc function is used to obtain an explanation of an error returned by theputc(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (putc(c, fp) == EOF)
{

fprintf(stderr, "%s\n", explain_putc(c, fp));
exit(EXIT_FAILURE);

}

c The original c, exactly as passed to theputc(3) system call.

fp The original fp, exactly as passed to theputc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_putc
const char *explain_errno_putc(int errnum, int c, FILE *fp);

The explain_errno_putc function is used to obtain an explanation of an error returned by theputc(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (putc(c, fp) == EOF)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_putc(err, c, fp));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

c The original c, exactly as passed to theputc(3) system call.

fp The original fp, exactly as passed to theputc(3) system call.

631

explain_putc(3) explain_putc(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_putc
void explain_message_putc(char *message, int message_size, int c, FILE *fp);

The explain_message_putcfunction may be used to obtain an explanation of an error returned by the
putc(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (putc(c, fp) == EOF)
{

char message[3000];
explain_message_putc(message, sizeof(message), c, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

c The original c, exactly as passed to theputc(3) system call.

fp The original fp, exactly as passed to theputc(3) system call.

explain_message_errno_putc
void explain_message_errno_putc(char *message, int message_size, int errnum, int c, FILE *fp);

The explain_message_errno_putcfunction may be used to obtain an explanation of an error returned by
the putc(3) system call. The least the message will contain is the value of strerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (putc(c, fp) == EOF)
{

int err = errno;
char message[3000];
explain_message_errno_putc(message, sizeof(message), err, c, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

c The original c, exactly as passed to theputc(3) system call.

632

explain_putc(3) explain_putc(3)

fp The original fp, exactly as passed to theputc(3) system call.

SEE ALSO
putc(3) output of characters

explain_putc_or_die(3)
output of characters and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

633

explain_putchar(3) explain_putchar(3)

NAME
explain_putchar − explain putchar(3) errors

SYNOPSIS
#include <libexplain/putchar.h>

const char *explain_putchar(int c);
const char *explain_errno_putchar(int errnum, int c);
void explain_message_putchar(char *message, int message_size, int c);
void explain_message_errno_putchar(char *message, int message_size, int errnum, int c);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theputchar(3) system call.

explain_putchar
const char *explain_putchar(int c);

The explain_putchar function is used to obtain an explanation of an error returned by theputchar(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (putchar(c) == EOF)
{

fprintf(stderr, "%s\n", explain_putchar(c));
exit(EXIT_FAILURE);

}

c The original c, exactly as passed to theputchar(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_putchar
const char *explain_errno_putchar(int errnum, int c);

The explain_errno_putchar function is used to obtain an explanation of an error returned by the
putchar(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (putchar(c) == EOF)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_putchar(err, c));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

c The original c, exactly as passed to theputchar(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

634

explain_putchar(3) explain_putchar(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_putchar
void explain_message_putchar(char *message, int message_size, int c);

Theexplain_message_putcharfunction may be used to obtain an explanation of an error returned by the
putchar(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (putchar(c) == EOF)
{

char message[3000];
explain_message_putchar(message, sizeof(message), c);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

c The original c, exactly as passed to theputchar(3) system call.

explain_message_errno_putchar
void explain_message_errno_putchar(char *message, int message_size, int errnum, int c);

The explain_message_errno_putcharfunction may be used to obtain an explanation of an error returned
by theputchar(3) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (putchar(c) == EOF)
{

int err = errno;
char message[3000];
explain_message_errno_putchar(message, sizeof(message), err, c);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

c The original c, exactly as passed to theputchar(3) system call.

SEE ALSO
putchar(3)

output of characters

635

explain_putchar(3) explain_putchar(3)

explain_putchar_or_die(3)
output of characters and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

636

explain_putchar_or_die(3) explain_putchar_or_die(3)

NAME
explain_putchar_or_die − output of characters and report errors

SYNOPSIS
#include <libexplain/putchar.h>

void explain_putchar_or_die(int c);

DESCRIPTION
Theexplain_putchar_or_die function is used to call theputchar(3) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_putchar(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_putchar_or_die(c);

c The c, exactly as to be passed to theputchar(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
putchar(3)

output of characters

explain_putchar(3)
explainputchar(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

637

explain_putc_or_die(3) explain_putc_or_die(3)

NAME
explain_putc_or_die − output of characters and report errors

SYNOPSIS
#include <libexplain/putc.h>

void explain_putc_or_die(int c, FILE *fp);

DESCRIPTION
Theexplain_putc_or_diefunction is used to call theputc(3) system call. On failure an explanation will be
printed to stderr, obtained from explain_putc(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_putc_or_die(c, fp);

c The c, exactly as to be passed to theputc(3) system call.

fp The fp, exactly as to be passed to theputc(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
putc(3) output of characters

explain_putc(3)
explainputc(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

638

explain_putenv(3) explain_putenv(3)

NAME
explain_putenv − explainputenv(3) errors

SYNOPSIS
#include <libexplain/putenv.h>

const char *explain_putenv(char *string);
const char *explain_errno_putenv(int errnum, char *string);
void explain_message_putenv(char *message, int message_size, char *string);
void explain_message_errno_putenv(char *message, int message_size, int errnum, char *string);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theputenv(3) system call.

explain_putenv
const char *explain_putenv(char *string);

Theexplain_putenv function is used to obtain an explanation of an error returned by theputenv(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

string The original string, exactly as passed to theputenv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (putenv(string) < 0)
{

fprintf(stderr, "%s\n", explain_putenv(string));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_putenv_or_die(3) function.

explain_errno_putenv
const char *explain_errno_putenv(int errnum, char *string);

Theexplain_errno_putenv function is used to obtain an explanation of an error returned by theputenv(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

string The original string, exactly as passed to theputenv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (putenv(string) < 0)
{

639

explain_putenv(3) explain_putenv(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_putenv(err, string));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_putenv_or_die(3) function.

explain_message_putenv
void explain_message_putenv(char *message, int message_size, char *string);

The explain_message_putenvfunction is used to obtain an explanation of an error returned by the
putenv(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

string The original string, exactly as passed to theputenv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (putenv(string) < 0)
{

char message[3000];
explain_message_putenv(message, sizeof(message), string);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_putenv_or_die(3) function.

explain_message_errno_putenv
void explain_message_errno_putenv(char *message, int message_size, int errnum, char *string);

Theexplain_message_errno_putenvfunction is used to obtain an explanation of an error returned by the
putenv(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

string The original string, exactly as passed to theputenv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (putenv(string) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_putenv(message, sizeof(message), err,
string);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

640

explain_putenv(3) explain_putenv(3)

The above code example is available pre-packaged as theexplain_putenv_or_die(3) function.

SEE ALSO
putenv(3)

change or add an environment variable

explain_putenv_or_die(3)
change or add an environment variable and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

641

explain_putenv_or_die(3) explain_putenv_or_die(3)

NAME
explain_putenv_or_die − change or add an environment variable and report errors

SYNOPSIS
#include <libexplain/putenv.h>

void explain_putenv_or_die(char *string);
int explain_putenv_on_error(char *string);

DESCRIPTION
The explain_putenv_or_diefunction is used to call theputenv(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_putenv(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_putenv_on_error function is used to call theputenv(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_putenv(3) function, but still returns to the caller.

string The string, exactly as to be passed to theputenv(3) system call.

RETURN VALUE
The explain_putenv_or_die function only returns on success, seeputenv(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_putenv_on_error function always returns the value return by the wrappedputenv(3) system
call.

EXAMPLE
Theexplain_putenv_or_diefunction is intended to be used in a fashion similar to the following example:

explain_putenv_or_die(string);

SEE ALSO
putenv(3)

change or add an environment variable

explain_putenv(3)
explainputenv(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

642

explain_puts(3) explain_puts(3)

NAME
explain_puts − explainputs(3) errors

SYNOPSIS
#include <libexplain/puts.h>

const char *explain_puts(const char *s);
const char *explain_errno_puts(int errnum, const char *s);
void explain_message_puts(char *message, int message_size, const char *s);
void explain_message_errno_puts(char *message, int message_size, int errnum, const char *s);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theputs(3) system call.

explain_puts
const char *explain_puts(const char *s);

Theexplain_puts function is used to obtain an explanation of an error returned by theputs(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

s The original s, exactly as passed to theputs(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (puts(s) < 0)
{

fprintf(stderr, "%s\n", explain_puts(s));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_puts_or_die(3) function.

explain_errno_puts
const char *explain_errno_puts(int errnum, const char *s);

The explain_errno_puts function is used to obtain an explanation of an error returned by theputs(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

s The original s, exactly as passed to theputs(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (puts(s) < 0)
{

643

explain_puts(3) explain_puts(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_puts(err, s));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_puts_or_die(3) function.

explain_message_puts
void explain_message_puts(char *message, int message_size, const char *s);

The explain_message_putsfunction is used to obtain an explanation of an error returned by theputs(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

s The original s, exactly as passed to theputs(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (puts(s) < 0)
{

char message[3000];
explain_message_puts(message, sizeof(message), s);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_puts_or_die(3) function.

explain_message_errno_puts
void explain_message_errno_puts(char *message, int message_size, int errnum, const char *s);

The explain_message_errno_putsfunction is used to obtain an explanation of an error returned by the
puts(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

s The original s, exactly as passed to theputs(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (puts(s) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_puts(message, sizeof(message), err, s);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_puts_or_die(3) function.

644

explain_puts(3) explain_puts(3)

SEE ALSO
puts(3) write a string and a trailing newline to stdout

explain_puts_or_die(3)
write a string and a trailing newline to stdout and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

645

explain_puts_or_die(3) explain_puts_or_die(3)

NAME
explain_puts_or_die − write a string and a newline to stdout and report errors

SYNOPSIS
#include <libexplain/puts.h>

void explain_puts_or_die(const char *s);
int explain_puts_on_error(const char *s);

DESCRIPTION
Theexplain_puts_or_diefunction is used to call theputs(3) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_puts(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_puts_on_error function is used to call theputs(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_puts(3) function, but still returns to the caller.

s The s, exactly as to be passed to theputs(3) system call.

RETURN VALUE
The explain_puts_or_diefunction only returns on success, seeputs(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_puts_on_errorfunction always returns the value return by the wrappedputs(3) system call.

EXAMPLE
Theexplain_puts_or_diefunction is intended to be used in a fashion similar to the following example:

explain_puts_or_die(s);

SEE ALSO
puts(3) write a string and a trailing newline to stdout

explain_puts(3)
explainputs(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

646

explain_putw(3) explain_putw(3)

NAME
explain_putw − explainputw(3) errors

SYNOPSIS
#include <libexplain/putw.h>

const char *explain_putw(int value, FILE *fp);
const char *explain_errno_putw(int errnum, int value, FILE *fp);
void explain_message_putw(char *message, int message_size, int value, FILE *fp);
void explain_message_errno_putw(char *message, int message_size, int errnum, int value, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theputw(3) system call.

explain_putw
const char *explain_putw(int value, FILE *fp);

Theexplain_putw function is used to obtain an explanation of an error returned by theputw(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

value The original value, exactly as passed to theputw(3) system call.

fp The original fp, exactly as passed to theputw(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (putw(value, fp) < 0)
{

fprintf(stderr, "%s\n", explain_putw(value, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_putw_or_die(3) function.

explain_errno_putw
const char *explain_errno_putw(int errnum, int value, FILE *fp);

The explain_errno_putw function is used to obtain an explanation of an error returned by theputw(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

value The original value, exactly as passed to theputw(3) system call.

fp The original fp, exactly as passed to theputw(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

647

explain_putw(3) explain_putw(3)

if (putw(value, fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_putw(err, value, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_putw_or_die(3) function.

explain_message_putw
void explain_message_putw(char *message, int message_size, int value, FILE *fp);

The explain_message_putwfunction is used to obtain an explanation of an error returned by theputw(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

value The original value, exactly as passed to theputw(3) system call.

fp The original fp, exactly as passed to theputw(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (putw(value, fp) < 0)
{

char message[3000];
explain_message_putw(message, sizeof(message), value, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_putw_or_die(3) function.

explain_message_errno_putw
void explain_message_errno_putw(char *message, int message_size, int errnum, int value, FILE *fp);

The explain_message_errno_putwfunction is used to obtain an explanation of an error returned by the
putw(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

value The original value, exactly as passed to theputw(3) system call.

fp The original fp, exactly as passed to theputw(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (putw(value, fp) < 0)
{

int err = errno;
char message[3000];

648

explain_putw(3) explain_putw(3)

explain_message_errno_putw(message, sizeof(message), err,
value, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_putw_or_die(3) function.

SEE ALSO
putw(3) output a word (int)

explain_putw_or_die(3)
output a word (int) and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

649

explain_putw_or_die(3) explain_putw_or_die(3)

NAME
explain_putw_or_die − output a word (int) and report errors

SYNOPSIS
#include <libexplain/putw.h>

void explain_putw_or_die(int value, FILE *fp);
int explain_putw_on_error(int value, FILE *fp);

DESCRIPTION
The explain_putw_or_die function is used to call theputw(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_putw(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_putw_on_error function is used to call theputw(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_putw(3) function, but still returns to the caller.

value The value, exactly as to be passed to theputw(3) system call.

fp The fp, exactly as to be passed to theputw(3) system call.

RETURN VALUE
Theexplain_putw_or_die function only returns on success, seeputw(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_putw_on_error function always returns the value return by the wrappedputw(3) system call.

EXAMPLE
Theexplain_putw_or_diefunction is intended to be used in a fashion similar to the following example:

explain_putw_or_die(value, fp);

SEE ALSO
putw(3) output a word (int)

explain_putw(3)
explainputw(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

650

explain_pwrite(3) explain_pwrite(3)

NAME
explain_pwrite − explain pwrite(2) errors

SYNOPSIS
#include <libexplain/pwrite.h>

const char *explain_pwrite(int fildes, const void *data, size_t data_size, off_t offset);
const char *explain_errno_pwrite(int errnum, int fildes, const void *data, size_t data_size, off_t offset);
void explain_message_pwrite(char *message, int message_size, int fildes, const void *data, size_t
data_size, off_t offset);
void explain_message_errno_pwrite(char *message, int message_size, int errnum, int fildes, const void
*data, size_t data_size, off_t offset);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thepwrite(2) system call.

explain_pwrite
const char *explain_pwrite(int fildes, const void *data, size_t data_size, off_t offset);

Theexplain_pwrite function is used to obtain an explanation of an error returned by thepwrite(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thepwrite(2) system call.

data The original data, exactly as passed to thepwrite(2) system call.

data_size
The original data_size, exactly as passed to thepwrite(2) system call.

offset The original offset, exactly as passed to thepwrite(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = pwrite(fildes, data, data_size, offset);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_pwrite(fildes, data,
data_size, offset));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pwrite_or_die(3) function.

explain_errno_pwrite
const char *explain_errno_pwrite(int errnum, int fildes, const void *data, size_t data_size, off_t offset);

The explain_errno_pwrite function is used to obtain an explanation of an error returned by thepwrite(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

651

explain_pwrite(3) explain_pwrite(3)

fildes The original fildes, exactly as passed to thepwrite(2) system call.

data The original data, exactly as passed to thepwrite(2) system call.

data_size
The original data_size, exactly as passed to thepwrite(2) system call.

offset The original offset, exactly as passed to thepwrite(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = pwrite(fildes, data, data_size, offset);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_pwrite(err, fildes,
data, data_size, offset));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pwrite_or_die(3) function.

explain_message_pwrite
void explain_message_pwrite(char *message, int message_size, int fildes, const void *data, size_t
data_size, off_t offset);

The explain_message_pwritefunction is used to obtain an explanation of an error returned by the
pwrite(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thepwrite(2) system call.

data The original data, exactly as passed to thepwrite(2) system call.

data_size
The original data_size, exactly as passed to thepwrite(2) system call.

offset The original offset, exactly as passed to thepwrite(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = pwrite(fildes, data, data_size, offset);
if (result < 0)
{

char message[3000];
explain_message_pwrite(message, sizeof(message), fildes, data,
data_size, offset);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pwrite_or_die(3) function.

652

explain_pwrite(3) explain_pwrite(3)

explain_message_errno_pwrite
void explain_message_errno_pwrite(char *message, int message_size, int errnum, int fildes, const void
*data, size_t data_size, off_t offset);

The explain_message_errno_pwritefunction is used to obtain an explanation of an error returned by the
pwrite(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thepwrite(2) system call.

data The original data, exactly as passed to thepwrite(2) system call.

data_size
The original data_size, exactly as passed to thepwrite(2) system call.

offset The original offset, exactly as passed to thepwrite(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = pwrite(fildes, data, data_size, offset);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_pwrite(message, sizeof(message), err,
fildes, data, data_size, offset);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_pwrite_or_die(3) function.

SEE ALSO
pwrite(2)

read from or write to a file descriptor at a given offset

explain_pwrite_or_die(3)
read from or write to a file descriptor at a given offset and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

653

explain_pwrite_or_die(3) explain_pwrite_or_die(3)

NAME
explain_pwrite_or_die − seek and write to a file descriptor and report errors

SYNOPSIS
#include <libexplain/pwrite.h>

ssize_t explain_pwrite_or_die(int fildes, const void *data, size_t data_size, off_t offset);
ssize_t explain_pwrite_on_error(int fildes, const void *data, size_t data_size, off_t offset))

DESCRIPTION
The explain_pwrite_or_die function is used to call thepwrite(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_pwrite(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_pwrite_on_error function is used to call thepwrite(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_pwrite(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thepwrite(2) system call.

data The data, exactly as to be passed to thepwrite(2) system call.

data_size
The data_size, exactly as to be passed to thepwrite(2) system call.

offset The offset, exactly as to be passed to thepwrite(2) system call.

RETURN VALUE
The explain_pwrite_or_die function only returns on success, seepwrite(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_pwrite_on_error function always returns the value return by the wrappedpwrite(2) system
call.

EXAMPLE
Theexplain_pwrite_or_die function is intended to be used in a fashion similar to the following example:

ssize_t result = explain_pwrite_or_die(fildes, data, data_size, offset);

SEE ALSO
pwrite(2)

read from or write to a file descriptor at a given offset

explain_pwrite(3)
explainpwrite(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

654

explain_raise(3) explain_raise(3)

NAME
explain_raise − explainraise(3) errors

SYNOPSIS
#include <libexplain/raise.h>

const char *explain_raise(int sig);
const char *explain_errno_raise(int errnum, int sig);
void explain_message_raise(char *message, int message_size, int sig);
void explain_message_errno_raise(char *message, int message_size, int errnum, int sig);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theraise(3) system call.

explain_raise
const char *explain_raise(int sig);

Theexplain_raisefunction is used to obtain an explanation of an error returned by theraise(3) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

sig The original sig, exactly as passed to theraise(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (raise(sig) < 0)
{

fprintf(stderr, "%s\n", explain_raise(sig));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_raise_or_die(3) function.

explain_errno_raise
const char *explain_errno_raise(int errnum, int sig);

The explain_errno_raise function is used to obtain an explanation of an error returned by theraise(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

sig The original sig, exactly as passed to theraise(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (raise(sig) < 0)
{

655

explain_raise(3) explain_raise(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_raise(err, sig));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_raise_or_die(3) function.

explain_message_raise
void explain_message_raise(char *message, int message_size, int sig);

The explain_message_raisefunction is used to obtain an explanation of an error returned by theraise(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

sig The original sig, exactly as passed to theraise(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (raise(sig) < 0)
{

char message[3000];
explain_message_raise(message, sizeof(message), sig);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_raise_or_die(3) function.

explain_message_errno_raise
void explain_message_errno_raise(char *message, int message_size, int errnum, int sig);

The explain_message_errno_raisefunction is used to obtain an explanation of an error returned by the
raise(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

sig The original sig, exactly as passed to theraise(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (raise(sig) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_raise(message, sizeof(message), err,
sig);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

656

explain_raise(3) explain_raise(3)

The above code example is available pre-packaged as theexplain_raise_or_die(3) function.

SEE ALSO
raise(3) send a signal to the caller

explain_raise_or_die(3)
send a signal to the caller and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

657

explain_raise_or_die(3) explain_raise_or_die(3)

NAME
explain_raise_or_die − send a signal to the caller and report errors

SYNOPSIS
#include <libexplain/raise.h>

void explain_raise_or_die(int sig);
int explain_raise_on_error(int sig);

DESCRIPTION
The explain_raise_or_diefunction is used to call theraise(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_raise(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_raise_on_errorfunction is used to call theraise(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_raise(3) function, but still returns to the caller.

sig The sig, exactly as to be passed to theraise(3) system call.

RETURN VALUE
Theexplain_raise_or_diefunction only returns on success, seeraise(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_raise_on_errorfunction always returns the value return by the wrappedraise(3) system call.

EXAMPLE
Theexplain_raise_or_diefunction is intended to be used in a fashion similar to the following example:

explain_raise_or_die(sig);

SEE ALSO
raise(3) send a signal to the caller

explain_raise(3)
explain raise(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

658

explain_read(3) explain_read(3)

NAME
explain_read − explain read(2) errors

SYNOPSIS
#include <libexplain/read.h>
const char *explain_read(int fildes, const void *data, long data_size);
const char *explain_errno_read(int errnum, int fildes, const void *data, long data_size);
void explain_message_read(char *message, int message_size, int fildes, const void *data, long data_size);
void explain_message_errno_read(char *message, int message_size, int errnum, int fildes, const void *data,
long data_size);

DESCRIPTION
These functions may be used to obtain an explanation forread(2) errors.

explain_read
const char *explain_read(int fildes, const void *data, long data_size);

The explain_read function may be used to obtain a human readable explanation of what went wrong in a
read(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

The error number will be picked up from theerrnoglobal variable.

This function is intended to be used in a fashion similar to the following example:
ssize_t n = read(fd, data, data_size);
if (n < 0)
{

fprintf(stderr, "%s\n", explain_read(fd, data, data_size));
exit(EXIT_FAILURE);

}

fildes The original fildes, exactly as passed to theread(2) system call.

data The original data, exactly as passed to theread(2) system call.

data_size
The original data_size, exactly as passed to theread(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_read
const char *explain_errno_read(int errnum, int fildes, const void *data, long data_size);

The explain_errno_read function may be used to obtain a human readable explanation of what went wrong
in a read(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
ssize_t n = read(fd, data, data_size);
if (n < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_read(err, fd, data, data_size));
exit(EXIT_FAILURE);

}

659

explain_read(3) explain_read(3)

errnum The error value to be decoded, usually obtain from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theread(2) system call.

data The original data, exactly as passed to theread(2) system call.

data_size
The original data_size, exactly as passed to theread(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_read
void explain_message_read(char *message, int message_size, int fildes, const void *data, long data_size);

The explain_message_read function may be used to obtain a human readable explanation of what went
wrong in aread(2) system call. The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

The error number will be picked up from theerrnoglobal variable.

This function is intended to be used in a fashion similar to the following example:
ssize_t n = read(fd, data, data_size);
if (n < 0)
{

char message[3000];
explain_message_read(message, sizeof(message), fd, data, data_size));
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theread(2) system call.

data The original data, exactly as passed to theread(2) system call.

data_size
The original data_size, exactly as passed to theread(2) system call.

Note: Given a suitably thread safe buffer, this function is thread safe.

explain_message_errno_read
void explain_message_errno_read(char *message, int message_size, int errnum, int fildes, const void *data,
long data_size);

The explain_message_errno_read function may be used to obtain a human readable explanation of what
went wrong in a read(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
ssize_t n = read(fd, data, data_size);
if (n < 0)
{

660

explain_read(3) explain_read(3)

int err = errno;
char message[3000];
explain_message_errno_read(message, sizeof(message), err,

fd, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtain from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theread(2) system call.

data The original data, exactly as passed to theread(2) system call.

data_size
The original data_size, exactly as passed to theread(2) system call.

Note: Given a suitably thread safe buffer, this function is thread safe.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

661

explain_readdir(3) explain_readdir(3)

NAME
explain_readdir − explain readdir(2) errors

SYNOPSIS
#include <libexplain/readdir.h>

const char *explain_readdir(DIR *dir);
const char *explain_errno_readdir(int errnum, DIR *dir);
void explain_message_readdir(char *message, int message_size, DIR *dir);
void explain_message_errno_readdir(char *message, int message_size, int errnum, DIR *dir);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thereaddir(2) system call.

explain_readdir
const char *explain_readdir(DIR *dir);

The explain_readdir function is used to obtain an explanation of an error returned by thereaddir(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct dirent *dep = readdir(dir);
if (!dep && errno != 0)
{

fprintf(stderr, "%s\n", explain_readdir(dir));
exit(EXIT_FAILURE);

}

dir The original dir, exactly as passed to thereaddir(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_readdir
const char *explain_errno_readdir(int errnum, DIR *dir);

Theexplain_errno_readdir function is used to obtain an explanation of an error returned by thereaddir(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct dirent *dep = readdir(dir);
int err = errno;
if (!dep && errno != 0)
{

fprintf(stderr, "%s\n", explain_errno_readdir(err, dir));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

662

explain_readdir(3) explain_readdir(3)

dir The original dir, exactly as passed to thereaddir(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_readdir
void explain_message_readdir(char *message, int message_size, DIR *dir);

Theexplain_message_readdirfunction may be used toobtain an explanation of an error returned by the
readdir(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct dirent *dep = readdir(dir);
if (!dep && errno != 0)
{

char message[3000];
explain_message_readdir(message, sizeof(message), dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

dir The original dir, exactly as passed to thereaddir(2) system call.

explain_message_errno_readdir
void explain_message_errno_readdir(char *message, int message_size, int errnum, DIR *dir);

The explain_message_errno_readdirfunction may be used to obtain an explanation of an error returned
by thereaddir(2) system call.The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
errno = 0;
struct dirent *dep = readdir(dir);
int err = errno;
if (!dep && errno != 0)
{

char message[3000];
explain_message_errno_readdir(message, sizeof(message), err, dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

663

explain_readdir(3) explain_readdir(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dir The original dir, exactly as passed to thereaddir(2) system call.

SEE ALSO
readdir(2)

read directory entry

explain_readdir_or_die(3)
read directory entry and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

664

explain_readdir_or_die(3) explain_readdir_or_die(3)

NAME
explain_readdir_or_die − read directory entry and report errors

SYNOPSIS
#include <libexplain/readdir.h>

struct dirent *explain_readdir_or_die(DIR *dir);

DESCRIPTION
Theexplain_readdir_or_die function is used to call thereaddir(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_readdir(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_readdir_or_die(dir);

dir The dir, exactly as to be passed to thereaddir(2) system call.

Returns: a pointer to a dirent structure, or NULL if end-of-file is reached. On failure, prints an explanation
and exits.

SEE ALSO
readdir(2)

read directory entry

explain_readdir(3)
explain readdir(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

665

explain_readlink(3) explain_readlink(3)

NAME
explain_readlink − explain readlink(2) errors

SYNOPSIS
#include <libexplain/readlink.h>

const char *explain_readlink(const char *pathname, char *data, size_t data_size);
const char *explain_errno_readlink(int errnum, const char *pathname, char *data, size_t data_size);
void explain_message_readlink(char *message, int message_size, const char *pathname, char *data, size_t
data_size);
void explain_message_errno_readlink(char *message, int message_size, int errnum, const char *pathname,
char *data, size_t data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thereadlink(2) system call.

explain_readlink
const char *explain_readlink(const char *pathname, char *data, size_t data_size);

The explain_readlink function is used to obtain an explanation of an error returned by thereadlink(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (readlink(pathname, data, data_size) < 0)
{

fprintf(stderr, "%s\n", explain_readlink(pathname, data, data_size));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thereadlink(2) system call.

data The original data, exactly as passed to thereadlink(2) system call.

data_size
The original data_size, exactly as passed to thereadlink(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_readlink
const char *explain_errno_readlink(int errnum, const char *pathname, char *data, size_t data_size);

The explain_errno_readlink function is used to obtain an explanation of an error returned by the
readlink(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (readlink(pathname, data, data_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_readlink(err, pathname, data,

data_size));
exit(EXIT_FAILURE);

}

666

explain_readlink(3) explain_readlink(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thereadlink(2) system call.

data The original data, exactly as passed to thereadlink(2) system call.

data_size
The original data_size, exactly as passed to thereadlink(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_readlink
void explain_message_readlink(char *message, int message_size, const char *pathname, char *data, size_t
data_size);

Theexplain_message_readlinkfunction may be used toobtain an explanation of an error returned by the
readlink(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (readlink(pathname, data, data_size) < 0)
{

char message[3000];
explain_message_readlink(message, sizeof(message), pathname, data,

data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thereadlink(2) system call.

data The original data, exactly as passed to thereadlink(2) system call.

data_size
The original data_size, exactly as passed to thereadlink(2) system call.

explain_message_errno_readlink
void explain_message_errno_readlink(char *message, int message_size, int errnum, const char *pathname,
char *data, size_t data_size);

Theexplain_message_errno_readlinkfunction may be used to obtain an explanation of an error returned
by thereadlink(2) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (readlink(pathname, data, data_size) < 0)
{

int err = errno;

667

explain_readlink(3) explain_readlink(3)

char message[3000];
explain_message_errno_readlink(message, sizeof(message), err, pathname,

data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thereadlink(2) system call.

data The original data, exactly as passed to thereadlink(2) system call.

data_size
The original data_size, exactly as passed to thereadlink(2) system call.

SEE ALSO
readlink(2)

blah blah blah

explain_readlink_or_die(3)
blah blah blah and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

668

explain_readlink_or_die(3) explain_readlink_or_die(3)

NAME
explain_readlink_or_die − read value of a symbolic link and report errors

SYNOPSIS
#include <libexplain/readlink.h>

ssize_t explain_readlink_or_die(const char *pathname, char *data, size_t data_size);
ssize_t explain_readlink_on_error(const char *pathname, char *data, size_t data_size))

DESCRIPTION
Theexplain_readlink_or_die function is used to call thereadlink(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_readlink(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_readlink_on_error function is used to call thereadlink(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_readlink(3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed to thereadlink(2) system call.

data The data, exactly as to be passed to thereadlink(2) system call.

data_size
The data_size, exactly as to be passed to thereadlink(2) system call.

RETURN VALUE
The explain_readlink_or_die function only returns on success, seereadlink(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_readlink_on_error function always returns the value return by the wrappedreadlink(2)
system call.

EXAMPLE
Theexplain_readlink_or_die function is intended to be used in a fashion similar to the following example:

ssize_t result = explain_readlink_or_die(pathname, data, data_size);

SEE ALSO
readlink(2)

read value of a symbolic link

explain_readlink(3)
explain readlink(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

669

explain_read_or_die(3) explain_read_or_die(3)

NAME
explain_read_or_die − read from a file descriptor and report errors

SYNOPSIS
#include <libexplain/read.h>

long explain_read_or_die(int fildes, const void *data, long data_size);

DESCRIPTION
Theexplain_read_or_diefunction is used to call theread(2) system call.On failure an explanation will be
printed to stderr, obtained from explain_read(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_read_or_die(fildes, data, data_size);

fildes The fildes, exactly as to be passed to theread(2) system call.

data The data, exactly as to be passed to theread(2) system call.

data_size
The data_size, exactly as to be passed to theread(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
read(2) read from a file descriptor

explain_read(3)
explain read(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

670

explain_readv(3) explain_readv(3)

NAME
explain_readv − explain readv(2) errors

SYNOPSIS
#include <libexplain/readv.h>

const char *explain_readv(int fildes, const struct iovec *iov, int iovcnt);
const char *explain_errno_readv(int errnum, int fildes, const struct iovec *iov, int iovcnt);
void explain_message_readv(char *message, int message_size, int fildes, const struct iovec *iov, int
iovcnt);
void explain_message_errno_readv(char *message, int message_size, int errnum, int fildes, const struct
iovec *iov, int iovcnt);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thereadv(2) system call.

explain_readv
const char *explain_readv(int fildes, const struct iovec *iov, int iovcnt);

The explain_readv function is used to obtain an explanation of an error returned by thereadv(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thereadv(2) system call.

iov The original iov, exactly as passed to thereadv(2) system call.

iovcnt The original iovcnt, exactly as passed to thereadv(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = readv(fildes, iov, iovcnt);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_readv(fildes, iov, iovcnt));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_readv_or_die(3) function.

explain_errno_readv
const char *explain_errno_readv(int errnum, int fildes, const struct iovec *iov, int iovcnt);

The explain_errno_readv function is used to obtain an explanation of an error returned by thereadv(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thereadv(2) system call.

iov The original iov, exactly as passed to thereadv(2) system call.

iovcnt The original iovcnt, exactly as passed to thereadv(2) system call.

671

explain_readv(3) explain_readv(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = readv(fildes, iov, iovcnt);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_readv(err, fildes, iov,
iovcnt));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_readv_or_die(3) function.

explain_message_readv
void explain_message_readv(char *message, int message_size, int fildes, const struct iovec *iov, int
iovcnt);

Theexplain_message_readvfunction is used to obtain an explanation of an error returned by thereadv(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thereadv(2) system call.

iov The original iov, exactly as passed to thereadv(2) system call.

iovcnt The original iovcnt, exactly as passed to thereadv(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = readv(fildes, iov, iovcnt);
if (result < 0)
{

char message[3000];
explain_message_readv(message, sizeof(message), fildes, iov,
iovcnt);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_readv_or_die(3) function.

explain_message_errno_readv
void explain_message_errno_readv(char *message, int message_size, int errnum, int fildes, const struct
iovec *iov, int iovcnt);

The explain_message_errno_readvfunction is used to obtain an explanation of an error returned by the
readv(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

672

explain_readv(3) explain_readv(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thereadv(2) system call.

iov The original iov, exactly as passed to thereadv(2) system call.

iovcnt The original iovcnt, exactly as passed to thereadv(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
ssize_t result = readv(fildes, iov, iovcnt);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_readv(message, sizeof(message), err,
fildes, iov, iovcnt);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_readv_or_die(3) function.

SEE ALSO
readv(2) read data into multiple buffers

explain_readv_or_die(3)
read data into multiple buffers and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

673

explain_readv_or_die(3) explain_readv_or_die(3)

NAME
explain_readv_or_die − read data into multiple buffers and report errors

SYNOPSIS
#include <libexplain/readv.h>

ssize_t explain_readv_or_die(int fildes, const struct iovec *iov, int iovcnt);
ssize_t explain_readv_on_error(int fildes, const struct iovec *iov, int iovcnt);

DESCRIPTION
Theexplain_readv_or_diefunction is used to call thereadv(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_readv(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_readv_on_error function is used to call thereadv(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_readv(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thereadv(2) system call.

iov The iov, exactly as to be passed to thereadv(2) system call.

iovcnt The iovcnt, exactly as to be passed to thereadv(2) system call.

RETURN VALUE
Theexplain_readv_or_diefunction only returns on success, seereadv(2) for more information. On failure,
prints an explanation and exits, it does not return.

The explain_readv_on_error function always returns the value return by the wrappedreadv(2) system
call.

EXAMPLE
Theexplain_readv_or_diefunction is intended to be used in a fashion similar to the following example:

ssize_t result = explain_readv_or_die(fildes, iov, iovcnt);

SEE ALSO
readv(2) read data into multiple buffers

explain_readv(3)
explain readv(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

674

explain_realloc(3) explain_realloc(3)

NAME
explain_realloc − explain realloc(3) errors

SYNOPSIS
#include <libexplain/realloc.h>

const char *explain_realloc(void *ptr, size_t size);
const char *explain_errno_realloc(int errnum, void *ptr, size_t size);
void explain_message_realloc(char *message, int message_size, void *ptr, size_t size);
void explain_message_errno_realloc(char *message, int message_size, int errnum, void *ptr, size_t size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by therealloc(3) system call.

explain_realloc
const char *explain_realloc(void *ptr, size_t size);

Theexplain_realloc function is used to obtain an explanation of an error returned by therealloc(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
void *new_ptr = realloc(ptr, size);
if (!new_ptr)
{

fprintf(stderr, "%s\n", explain_realloc(ptr, size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_realloc_or_die(3) function.

ptr The original ptr, exactly as passed to therealloc(3) system call.

size The original size, exactly as passed to therealloc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_realloc
const char *explain_errno_realloc(int errnum, void *ptr, size_t size);

Theexplain_errno_realloc function is used to obtain an explanation of an error returned by therealloc(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
void *new_ptr = realloc(ptr, size);
if (!new_ptr)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_realloc(err, ptr, size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_realloc_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be

675

explain_realloc(3) explain_realloc(3)

explained and this function, because many libc functions will alter the value oferrno.

ptr The original ptr, exactly as passed to therealloc(3) system call.

size The original size, exactly as passed to therealloc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_realloc
void explain_message_realloc(char *message, int message_size, void *ptr, size_t size);

The explain_message_reallocfunction may be used to obtain an explanation of an error returned by the
realloc(3) system call.The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
void *new_ptr = realloc(ptr, size);
if (!new_ptr)
{

char message[3000];
explain_message_realloc(message, sizeof(message), ptr, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_realloc_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

ptr The original ptr, exactly as passed to therealloc(3) system call.

size The original size, exactly as passed to therealloc(3) system call.

explain_message_errno_realloc
void explain_message_errno_realloc(char *message, int message_size, int errnum, void *ptr, size_t size);

Theexplain_message_errno_reallocfunction may be used to obtain an explanation of an error returned by
the realloc(3) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
void *new_ptr = realloc(ptr, size);
if (!new_ptr)
{

int err = errno;
char message[3000];
explain_message_errno_realloc(message, sizeof(message), err, ptr, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_realloc_or_die(3) function.

676

explain_realloc(3) explain_realloc(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ptr The original ptr, exactly as passed to therealloc(3) system call.

size The original size, exactly as passed to therealloc(3) system call.

SEE ALSO
realloc(3)

Allocate and free dynamic memory

explain_realloc_or_die(3)
Allocate and free dynamic memory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

677

explain_realloc_or_die(3) explain_realloc_or_die(3)

NAME
explain_realloc_or_die − Allocate and free dynamic memory and report errors

SYNOPSIS
#include <libexplain/realloc.h>

void explain_realloc_or_die(void *ptr, size_t size);

DESCRIPTION
The explain_realloc_or_diefunction is used to call therealloc(3) system call.On failure an explanation
will be printed tostderr, obtained fromexplain_realloc(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
void *new_ptr = explain_realloc_or_die(ptr, size);

ptr The ptr, exactly as to be passed to therealloc(3) system call.

size The size, exactly as to be passed to therealloc(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
realloc(3)

Allocate and free dynamic memory

explain_realloc(3)
explain realloc(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

678

explain_realpath(3) explain_realpath(3)

NAME
explain_realpath − explainrealpath(3) errors

SYNOPSIS
#include <libexplain/realpath.h>

const char *explain_realpath(const char *pathname, char *resolved_pathname);
const char *explain_errno_realpath(int errnum, const char *pathname, char *resolved_pathname);
void explain_message_realpath(char *message, int message_size, const char *pathname, char
*resolved_pathname);
void explain_message_errno_realpath(char *message, int message_size, int errnum, const char *pathname,
char *resolved_pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by therealpath(3) system call.

explain_realpath
const char *explain_realpath(const char *pathname, char *resolved_pathname);

The explain_realpath function is used to obtain an explanation of an error returned by therealpath(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to therealpath(3) system call.

resolved_pathname
The original resolved_pathname, exactly as passed to therealpath(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = realpath(pathname, resolved_pathname);
if (!result)
{

fprintf(stderr, "%s\n", explain_realpath(pathname,
resolved_pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_realpath_or_die(3) function.

explain_errno_realpath
const char *explain_errno_realpath(int errnum, const char *pathname, char *resolved_pathname);

The explain_errno_realpath function is used to obtain an explanation of an error returned by the
realpath(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to therealpath(3) system call.

679

explain_realpath(3) explain_realpath(3)

resolved_pathname
The original resolved_pathname, exactly as passed to therealpath(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = realpath(pathname, resolved_pathname);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_realpath(err, pathname,
resolved_pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_realpath_or_die(3) function.

explain_message_realpath
void explain_message_realpath(char *message, int message_size, const char *pathname, char
*resolved_pathname);

The explain_message_realpathfunction is used to obtain an explanation of an error returned by the
realpath(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to therealpath(3) system call.

resolved_pathname
The original resolved_pathname, exactly as passed to therealpath(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = realpath(pathname, resolved_pathname);
if (!result)
{

char message[3000];
explain_message_realpath(message, sizeof(message), pathname,
resolved_pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_realpath_or_die(3) function.

explain_message_errno_realpath
void explain_message_errno_realpath(char *message, int message_size, int errnum, const char *pathname,
char *resolved_pathname);

Theexplain_message_errno_realpathfunction is used to obtain an explanation of an error returned by the
realpath(3) system call. The least the message will contain is the value of strerror(errno) , but

680

explain_realpath(3) explain_realpath(3)

usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to therealpath(3) system call.

resolved_pathname
The original resolved_pathname, exactly as passed to therealpath(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = realpath(pathname, resolved_pathname);
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_realpath(message, sizeof(message), err,
pathname, resolved_pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_realpath_or_die(3) function.

SEE ALSO
realpath(3)

return the canonicalized absolute pathname

explain_realpath_or_die(3)
return the canonicalized absolute pathname and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

681

explain_realpath_or_die(3) explain_realpath_or_die(3)

NAME
explain_realpath_or_die − return canonical pathname and report errors

SYNOPSIS
#include <libexplain/realpath.h>

char *explain_realpath_or_die(const char *pathname, char *resolved_pathname);
char *explain_realpath_on_error(const char *pathname, char *resolved_pathname);

DESCRIPTION
Theexplain_realpath_or_diefunction is used to call therealpath(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_realpath(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_realpath_on_error function is used to call therealpath(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_realpath(3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed to therealpath(3) system call.

resolved_pathname
The resolved_pathname, exactly as to be passed to therealpath(3) system call.

RETURN VALUE
The explain_realpath_or_die function only returns on success, seerealpath(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_realpath_on_error function always returns the value return by the wrappedrealpath(3)
system call.

EXAMPLE
Theexplain_realpath_or_diefunction is intended to be used in a fashion similar to the following example:

char *result = explain_realpath_or_die(pathname, resolved_pathname);

SEE ALSO
realpath(3)

return the canonicalized absolute pathname

explain_realpath(3)
explain realpath(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

682

explain_remove(3) explain_remove(3)

NAME
explain_remove − explain remove(2) errors

SYNOPSIS
#include <libexplain/remove.h>

const char *explain_remove(const char *pathname);
const char *explain_errno_remove(int errnum, const char *pathname);
void explain_message_remove(char *message, int message_size, const char *pathname);
void explain_message_errno_remove(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theremove(2) system call.

explain_remove
const char *explain_remove(const char *pathname);

The explain_remove function may be used to describe errors returned by theremove() system call.The
least the message will contain is the value ofstrerror(errno) , but usually it will do much better, and
indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (remove(pathname) < 0)
{

fprintf(stderr, "%s\n", explain_remove(pathname));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to theremove(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_remove
const char *explain_errno_remove(int errnum, const char *pathname);

Theexplain_errno_remove function may be used to describe errors returned by theremove() system call.
The least the message will contain is the value of strerror(errnum) , but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (remove(pathname) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_remove(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theremove(2) system call.

683

explain_remove(3) explain_remove(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_removevoid explain_message_remove(char *message,
int message_size, const char *pathname);

The explain_message_remove function may be used to describe errors returned by theremove() system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (remove(pathname) < 0)
{

char message[3000];
explain_message_remove(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theremove(2) system call.

explain_message_errno_remove
void explain_message_errno_remove(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_remove function may be used to describe errors returned by theremove()
system call. The least the message will contain is the value ofstrerror(errnum), but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (remove(pathname) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_remove(message, sizeof(message), err, pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

684

explain_remove(3) explain_remove(3)

pathname
The original pathname, exactly as passed to theremove(2) system call.

SEE ALSO
remove delete a name and possibly the file it refers to

explain_remove_or_die
delete a file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

685

explain_remove_or_die(3) explain_remove_or_die(3)

NAME
explain_remove_or_die − delete a file and report errors

SYNOPSIS
#include <libexplain/remove.h>

void explain_remove_or_die(const char *pathname);

DESCRIPTION
Theexplain_remove_or_die function is used to call theremove(2) system call.On failure an explanation
will be printed tostderr, obtained fromexplain_remove(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_remove_or_die(pathname);

pathname
The pathname, exactly as to be passed to theremove(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
remove(2)

delete a name and possibly the file it refers to

explain_remove(3)
explain remove(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

686

explain_rename(3) explain_rename(3)

NAME
explain_rename − explain rename(2) errors

SYNOPSIS
#include <libexplain/rename.h>
const char *explain_rename(const char *oldpath, const char *newpath);
const char *explain_errno_rename(int errnum, const char *oldpath, const char *newpath);
void explain_message_rename(char *message, int message_size, const char *oldpath, const char
*newpath);
void explain_message_errno_rename(char *message, int message_size, int errnum, const char *oldpath,
const char *newpath);

DESCRIPTION
The functions declared in the<libexplain/rename.h> include file may be used to explain errors
returned by therename(2) system call.

explain_rename
const char *explain_rename(const char *oldpath, const char *newpath);

The explain_rename function is used to obtain an explanation of an error returned by therename(2)
function. Theleast the message will contain is the value of strerror(errno), but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (rename(oldpath, rewpath) < 0)
{

fprintf(stderr, "%s\n", explain_rename(oldpath, newpath));
exit(EXIT_FAILURE);

}

oldpath The original oldpath, exactly as passed to therename(2) system call.

newpath The original newpath, exactly as passed to therename(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_rename
const char *explain_errno_rename(int errnum, const char *oldpath, const char *newpath);

The explain_errno_rename function is used to obtain an explanation of an error returned by the rename(2)
function. Theleast the message will contain is the value of strerror(errnum), but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (rename(oldpath, newpath) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_rename(err, oldpath,

newpath));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

687

explain_rename(3) explain_rename(3)

oldpath The original oldpath, exactly as passed to therename(2) system call.

newpath The original newpath, exactly as passed to therename(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_rename
void explain_message_rename(char *message, int message_size, const char *oldpath, const char
*newpath);

The explain_message_rename function is used to obtain an explanation of an error returned by the
rename(2) function. The least the message will contain is the value of strerror(errno), but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (rename(oldpath, newpath) < 0)
{

char message[3000];
explain_message_rename(message, sizeof(message), oldpath,

newpath);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe, if the buffer is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

oldpath The original oldpath, exactly as passed to therename(2) system call.

newpath The original newpath, exactly as passed to therename(2) system call.

explain_message_errno_rename
void explain_message_errno_rename(char *message, int message_size, int errnum, const char *oldpath,
const char *newpath);

The explain_message_errno_rename function is used to obtain an explanation of an error returned by the
rename(2) function. The least the message will contain is the value of strerror(errnum), but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (rename(oldpath, newpath) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_rename(message, sizeof(message), err,

oldpath, newpath);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe, given a thread safe buffer.

688

explain_rename(3) explain_rename(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

oldpath The original oldpath, exactly as passed to therename(2) system call.

newpath The original newpath, exactly as passed to therename(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

689

explain_rename_or_die(3) explain_rename_or_die(3)

NAME
explain_rename_or_die − change the name of a file and report errors

SYNOPSIS
#include <libexplain/rename.h>

void explain_rename_or_die(const char *oldpath, const char *newpath);

DESCRIPTION
Theexplain_rename_or_diefunction is used to call therename(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_rename(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_rename_or_die(oldpath, newpath);

oldpath The oldpath, exactly as to be passed to therename(2) system call.

newpath The newpath, exactly as to be passed to therename(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
rename(2)

change the name or location of a file

explain_rename(3)
explain rename(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

690

explain_rmdir(3) explain_rmdir(3)

NAME
explain_rmdir − explain rmdir(2) errors

SYNOPSIS
#include <libexplain/rmdir.h>

const char *explain_rmdir(const char *pathname);
const char *explain_errno_rmdir(int errnum, const char pathname);
void explain_message_rmdir(char *message, int message_size, const char *pathname);
void explain_message_errno_rmdir(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thermdir(2) system call.

explain_rmdir
const char *explain_rmdir(const char *pathname);

Theexplain_rmdir function may be used to describe errors returned by thermdir() system call. The least
the message will contain is the value ofstrerror(errno) , but usually it will do much better, and
indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (rmdir(pathname) < 0)
{

fprintf(stderr, "%s\n", explain_rmdir(pathname));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thermdir(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_rmdir
const char *explain_errno_rmdir(int errnum, const char *pathname);

The explain_errno_rmdir function may be used to describe errors returned by thermdir() system call.
The least the message will contain is the value of strerror(errnum) , but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (rmdir(pathname) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_rmdir(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thermdir(2) system call.

691

explain_rmdir(3) explain_rmdir(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_rmdir
void explain_message_rmdir(char *message, int message_size, const char *pathname);

Theexplain_message_rmdirfunction may be used to describe errors returned by thermdir() system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (rmdir(pathname) < 0)
{

char message[3000];
explain_message_rmdir(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thermdir(2) system call.

explain_message_errno_rmdir
void explain_message_errno_rmdir(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_rmdirfunction may be used to describe errors returned by thermdir()
system call.The least the message will contain is the value ofstrerror(errnum), but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (rmdir(pathname) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_rmdir(message, sizeof(message), err, pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

692

explain_rmdir(3) explain_rmdir(3)

pathname
The original pathname, exactly as passed to thermdir(2) system call.

SEE ALSO
rmdir delete a directory

explain_rmdir_or_die
delete a directory and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

693

explain_rmdir_or_die(3) explain_rmdir_or_die(3)

NAME
explain_rmdir_or_die − delete a directory and report errors

SYNOPSIS
#include <libexplain/rmdir.h>

void explain_rmdir_or_die(const char *pathname);

DESCRIPTION
Theexplain_rmdir_or_die function is used to call thermdir(2) system call. On failure an explanation will
be printed tostderr, obtained from explain_rmdir(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_rmdir_or_die(pathname);

pathname
The pathname, exactly as to be passed to thermdir(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
rmdir(2) delete a directory

explain_rmdir(3)
explain rmdir(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

694

explain_select(3) explain_select(3)

NAME
explain_select − explain select(2) errors

SYNOPSIS
#include <sys/select.h> #include <libexplain/select.h>

const char *explain_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);
const char *explain_errno_select(int errnum, int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval * timeout);
void explain_message_select(char *message, int message_size, int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval * timeout);
void explain_message_errno_select(char *message, int message_size, int errnum, int nfds, fd_set *readfds,
fd_set *writefds, fd_set *exceptfds, struct timeval * timeout);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theselect(2) system call.

explain_select
const char *explain_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

The explain_selectfunction is used to obtain an explanation of an error returned by theselect(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (select(nfds, readfds, writefds, exceptfds, timeout) < 0)
{

fprintf(stderr, "%s\n", explain_select(nfds,
readfds, writefds, exceptfds, timeout));

exit(EXIT_FAILURE);
}

nfds The original nfds, exactly as passed to theselect(2) system call.

readfds The original readfds, exactly as passed to theselect(2) system call.

writefds The original writefds, exactly as passed to theselect(2) system call.

exceptfds
The original exceptfds, exactly as passed to theselect(2) system call.

timeout The original timeout, exactly as passed to theselect(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_select
const char *explain_errno_select(int errnum, int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval * timeout);

The explain_errno_selectfunction is used to obtain an explanation of an error returned by theselect(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (select(nfds, readfds, writefds, exceptfds, timeout) < 0)

695

explain_select(3) explain_select(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_select(err,

nfds, readfds, writefds, exceptfds, timeout));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nfds The original nfds, exactly as passed to theselect(2) system call.

readfds The original readfds, exactly as passed to theselect(2) system call.

writefds The original writefds, exactly as passed to theselect(2) system call.

exceptfds
The original exceptfds, exactly as passed to theselect(2) system call.

timeout The original timeout, exactly as passed to theselect(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_select
void explain_message_select(char *message, int message_size, int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval * timeout);

The explain_message_selectfunction may be used toobtain an explanation of an error returned by the
select(2) system call.The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (select(nfds, readfds, writefds, exceptfds, timeout) < 0)
{

char message[3000];
explain_message_select(message, sizeof(message),

nfds, readfds, writefds, exceptfds, timeout);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nfds The original nfds, exactly as passed to theselect(2) system call.

readfds The original readfds, exactly as passed to theselect(2) system call.

writefds The original writefds, exactly as passed to theselect(2) system call.

exceptfds
The original exceptfds, exactly as passed to theselect(2) system call.

timeout The original timeout, exactly as passed to theselect(2) system call.

696

explain_select(3) explain_select(3)

explain_message_errno_select
void explain_message_errno_select(char *message, int message_size, int errnum, int nfds, fd_set *readfds,
fd_set *writefds, fd_set *exceptfds, struct timeval * timeout);

Theexplain_message_errno_selectfunction may be used to obtain an explanation of an error returned by
the select(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (select(nfds, readfds, writefds, exceptfds, timeout) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_select(message, sizeof(message), err,

nfds, readfds, writefds, exceptfds, timeout);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nfds The original nfds, exactly as passed to theselect(2) system call.

readfds The original readfds, exactly as passed to theselect(2) system call.

writefds The original writefds, exactly as passed to theselect(2) system call.

exceptfds
The original exceptfds, exactly as passed to theselect(2) system call.

timeout The original timeout, exactly as passed to theselect(2) system call.

SEE ALSO
select(2) blah blah

explain_select_or_die(3)
blah blah and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

697

explain_select_or_die(3) explain_select_or_die(3)

NAME
explain_select_or_die − blah blah and report errors

SYNOPSIS
#include <libexplain/select.h>

void explain_select_or_die(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval
*timeout);

DESCRIPTION
Theexplain_select_or_diefunction is used to call theselect(2) system call.On failure an explanation will
be printed tostderr, obtained from explain_select(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_select_or_die(nfds, readfds, writefds, exceptfds, timeout);

nfds The nfds, exactly as to be passed to theselect(2) system call.

readfds The readfds, exactly as to be passed to theselect(2) system call.

writefds The writefds, exactly as to be passed to theselect(2) system call.

exceptfds
The exceptfds, exactly as to be passed to theselect(2) system call.

timeout The timeout, exactly as to be passed to theselect(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
select(2) blah blah

explain_select(3)
explainselect(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

698

explain_setbuf(3) explain_setbuf(3)

NAME
explain_setbuf − explainsetbuf(3) errors

SYNOPSIS
#include <libexplain/setbuf.h>

const char *explain_setbuf(FILE *fp, char *data);
const char *explain_errno_setbuf(int errnum, FILE *fp, char *data);
void explain_message_setbuf(char *message, int message_size, FILE *fp, char *data);
void explain_message_errno_setbuf(char *message, int message_size, int errnum, FILE *fp, char *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetbuf(3) system call.

explain_setbuf
const char *explain_setbuf(FILE *fp, char *data);

The explain_setbuf function is used to obtain an explanation of an error returned by thesetbuf(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thesetbuf(3) system call.

data The original data, exactly as passed to thesetbuf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setbuf(fp, data);
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_setbuf(fp, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setbuf_or_die(3) function.

explain_errno_setbuf
const char *explain_errno_setbuf(int errnum, FILE *fp, char *data);

The explain_errno_setbuf function is used to obtain an explanation of an error returned by thesetbuf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thesetbuf(3) system call.

data The original data, exactly as passed to thesetbuf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

699

explain_setbuf(3) explain_setbuf(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setbuf(fp, data);
if (result < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setbuf(err, fp, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setbuf_or_die(3) function.

explain_message_setbuf
void explain_message_setbuf(char *message, int message_size, FILE *fp, char *data);

Theexplain_message_setbuffunction is used to obtain an explanation of an error returned by thesetbuf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thesetbuf(3) system call.

data The original data, exactly as passed to thesetbuf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setbuf(fp, data);
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_setbuf(message, sizeof(message), fp, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setbuf_or_die(3) function.

explain_message_errno_setbuf
void explain_message_errno_setbuf(char *message, int message_size, int errnum, FILE *fp, char *data);

The explain_message_errno_setbuffunction is used to obtain an explanation of an error returned by the
setbuf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thesetbuf(3) system call.

700

explain_setbuf(3) explain_setbuf(3)

data The original data, exactly as passed to thesetbuf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setbuf(fp, data);
if (result < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_setbuf(message, sizeof(message), err,
fp, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setbuf_or_die(3) function.

SEE ALSO
setbuf(3)

set stream buffer

explain_setbuf_or_die(3)
set stream buffer and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

701

explain_setbuffer(3) explain_setbuffer(3)

NAME
explain_setbuffer − explainsetbuffer(3) errors

SYNOPSIS
#include <libexplain/setbuffer.h>

const char *explain_setbuffer(FILE *fp, char *data, size_t size);
const char *explain_errno_setbuffer(int errnum, FILE *fp, char *data, size_t size);
void explain_message_setbuffer(char *message, int message_size, FILE *fp, char *data, size_t size);
void explain_message_errno_setbuffer(char *message, int message_size, int errnum, FILE *fp, char *data,
size_t size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetbuffer(3) system call.

explain_setbuffer
const char *explain_setbuffer(FILE *fp, char *data, size_t size);

The explain_setbuffer function is used to obtain an explanation of an error returned by thesetbuffer(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thesetbuffer(3) system call.

data The original data, exactly as passed to thesetbuffer(3) system call.

size The original size, exactly as passed to thesetbuffer(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
void result = setbuffer(fp, data, size);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_setbuffer(fp, data, size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setbuffer_or_die(3) function.

explain_errno_setbuffer
const char *explain_errno_setbuffer(int errnum, FILE *fp, char *data, size_t size);

The explain_errno_setbuffer function is used to obtain an explanation of an error returned by the
setbuffer(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thesetbuffer(3) system call.

data The original data, exactly as passed to thesetbuffer(3) system call.

size The original size, exactly as passed to thesetbuffer(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

702

explain_setbuffer(3) explain_setbuffer(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
void result = setbuffer(fp, data, size);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setbuffer(err, fp, data,
size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setbuffer_or_die(3) function.

explain_message_setbuffer
void explain_message_setbuffer(char *message, int message_size, FILE *fp, char *data, size_t size);

The explain_message_setbufferfunction is used to obtain an explanation of an error returned by the
setbuffer(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thesetbuffer(3) system call.

data The original data, exactly as passed to thesetbuffer(3) system call.

size The original size, exactly as passed to thesetbuffer(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
void result = setbuffer(fp, data, size);
if (result < 0)
{

char message[3000];
explain_message_setbuffer(message, sizeof(message), fp, data,
size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setbuffer_or_die(3) function.

explain_message_errno_setbuffer
void explain_message_errno_setbuffer(char *message, int message_size, int errnum, FILE *fp, char *data,
size_t size);

The explain_message_errno_setbufferfunction is used to obtain an explanation of an error returned by
the setbuffer(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

703

explain_setbuffer(3) explain_setbuffer(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thesetbuffer(3) system call.

data The original data, exactly as passed to thesetbuffer(3) system call.

size The original size, exactly as passed to thesetbuffer(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
void result = setbuffer(fp, data, size);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setbuffer(message, sizeof(message), err,
fp, data, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setbuffer_or_die(3) function.

SEE ALSO
setbuffer(3)

stream buffering operations

explain_setbuffer_or_die(3)
stream buffering operations and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

704

explain_setbuffer_or_die(3) explain_setbuffer_or_die(3)

NAME
explain_setbuffer_or_die − stream buffering operations and report errors

SYNOPSIS
#include <libexplain/setbuffer.h>

void explain_setbuffer_or_die(FILE *fp, char *data, size_t size);
void explain_setbuffer_on_error(FILE *fp, char *data, size_t size);

DESCRIPTION
The explain_setbuffer_or_die function is used to call thesetbuffer(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setbuffer(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_setbuffer_on_error function is used to call thesetbuffer(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setbuffer(3) function, but still returns to the
caller.

fp The fp, exactly as to be passed to thesetbuffer(3) system call.

data The data, exactly as to be passed to thesetbuffer(3) system call.

size The size, exactly as to be passed to thesetbuffer(3) system call.

RETURN VALUE
Theexplain_setbuffer_or_diefunction only returns on success, seesetbuffer(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setbuffer_on_error function always returns the value return by the wrappedsetbuffer(3)
system call.

EXAMPLE
The explain_setbuffer_or_die function is intended to be used in a fashion similar to the following
example:

void result = explain_setbuffer_or_die(fp, data, size);

SEE ALSO
setbuffer(3)

stream buffering operations

explain_setbuffer(3)
explainsetbuffer(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

705

explain_setbuf_or_die(3) explain_setbuf_or_die(3)

NAME
explain_setbuf_or_die − set stream buffer and report errors

SYNOPSIS
#include <libexplain/setbuf.h>

void explain_setbuf_or_die(FILE *fp, char *data);
void explain_setbuf_on_error(FILE *fp, char *data);

DESCRIPTION
Theexplain_setbuf_or_diefunction is used to call thesetbuf(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_setbuf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setbuf_on_error function is used to call thesetbuf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setbuf(3) function, but still returns to the caller.

fp The fp, exactly as to be passed to thesetbuf(3) system call.

data The data, exactly as to be passed to thesetbuf(3) system call.

RETURN VALUE
The explain_setbuf_or_die function only returns on success, seesetbuf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setbuf_on_error function always returns the value return by the wrappedsetbuf(3) system
call.

EXAMPLE
Theexplain_setbuf_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setbuf_or_die(fp, data);

SEE ALSO
setbuf(3)

set stream buffer

explain_setbuf(3)
explainsetbuf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

706

explain_setdomainname(3) explain_setdomainname(3)

NAME
explain_setdomainname − explain setdomainname(2) errors

SYNOPSIS
#include <libexplain/setdomainname.h>

const char *explain_setdomainname(const char *data, size_t data_size);
const char *explain_errno_setdomainname(int errnum, const char *data, size_t data_size);
void explain_message_setdomainname(char *message, int message_size, const char *data, size_t
data_size);
void explain_message_errno_setdomainname(char *message, int message_size, int errnum, const char
*data, size_t data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetdomainname(2) system
call.

explain_setdomainname
const char *explain_setdomainname(const char *data, size_t data_size);

The explain_setdomainnamefunction is used to obtain an explanation of an error returned by the
setdomainname(2) system call. The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thesetdomainname(2) system call.

data_size
The original data_size, exactly as passed to thesetdomainname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setdomainname(data, data_size) < 0)
{

fprintf(stderr, "%s\n", explain_setdomainname(data,
data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setdomainname_or_die(3) function.

explain_errno_setdomainname
const char *explain_errno_setdomainname(int errnum, const char *data, size_t data_size);

The explain_errno_setdomainnamefunction is used to obtain an explanation of an error returned by the
setdomainname(2) system call. The least the message will contain is the value ofstrerror(errno) ,
but usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thesetdomainname(2) system call.

data_size
The original data_size, exactly as passed to thesetdomainname(2) system call.

707

explain_setdomainname(3) explain_setdomainname(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setdomainname(data, data_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setdomainname(err, data,
data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setdomainname_or_die(3) function.

explain_message_setdomainname
void explain_message_setdomainname(char *message, int message_size, const char *data, size_t
data_size);

The explain_message_setdomainnamefunction is used to obtain an explanation of an error returned by
the setdomainname(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thesetdomainname(2) system call.

data_size
The original data_size, exactly as passed to thesetdomainname(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setdomainname(data, data_size) < 0)
{

char message[3000];
explain_message_setdomainname(message, sizeof(message), data,
data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setdomainname_or_die(3) function.

explain_message_errno_setdomainname
void explain_message_errno_setdomainname(char *message, int message_size, int errnum, const char
*data, size_t data_size);

The explain_message_errno_setdomainnamefunction is used to obtain an explanation of an error
returned by thesetdomainname(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

708

explain_setdomainname(3) explain_setdomainname(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thesetdomainname(2) system call.

data_size
The original data_size, exactly as passed to thesetdomainname(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setdomainname(data, data_size) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setdomainname(message, sizeof(message),
err, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setdomainname_or_die(3) function.

SEE ALSO
setdomainname(2)

set domain name

explain_setdomainname_or_die(3)
set domain name and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

709

explain_setdomainname_or_die(3) explain_setdomainname_or_die(3)

NAME
explain_setdomainname_or_die − set domain name and report errors

SYNOPSIS
#include <libexplain/setdomainname.h>

void explain_setdomainname_or_die(const char *data, size_t data_size);
int explain_setdomainname_on_error(const char *data, size_t data_size);

DESCRIPTION
Theexplain_setdomainname_or_diefunction is used to call thesetdomainname(2) system call. On failure
an explanation will be printed tostderr, obtained from theexplain_setdomainname(3) function, and then
the process terminates by callingexit(EXIT_FAILURE) .

The explain_setdomainname_on_errorfunction is used to call thesetdomainname(2) system call. On
failure an explanation will be printed tostderr, obtained from theexplain_setdomainname(3) function, but
still returns to the caller.

data The data, exactly as to be passed to thesetdomainname(2) system call.

data_size
The data_size, exactly as to be passed to thesetdomainname(2) system call.

RETURN VALUE
The explain_setdomainname_or_diefunction only returns on success, seesetdomainname(2) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_setdomainname_on_error function always returns the value return by the wrapped
setdomainname(2) system call.

EXAMPLE
Theexplain_setdomainname_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_setdomainname_or_die(data, data_size);

SEE ALSO
setdomainname(2)

set domain name

explain_setdomainname(3)
explainsetdomainname(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

710

explain_setenv(3) explain_setenv(3)

NAME
explain_setenv − explainsetenv(3) errors

SYNOPSIS
#include <libexplain/setenv.h>

const char *explain_setenv(const char *name, const char *value, int overwrite);
const char *explain_errno_setenv(int errnum, const char *name, const char *value, int overwrite);
void explain_message_setenv(char *message, int message_size, const char *name, const char *value, int
overwrite);
void explain_message_errno_setenv(char *message, int message_size, int errnum, const char *name, const
char *value, int overwrite);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetenv(3) system call.

explain_setenv
const char *explain_setenv(const char *name, const char *value, int overwrite);

The explain_setenvfunction is used to obtain an explanation of an error returned by thesetenv(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

name The original name, exactly as passed to thesetenv(3) system call.

value The original value, exactly as passed to thesetenv(3) system call.

overwrite
The original overwrite, exactly as passed to thesetenv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setenv(name, value, overwrite) < 0)
{

fprintf(stderr, "%s\n", explain_setenv(name, value,
overwrite));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setenv_or_die(3) function.

explain_errno_setenv
const char *explain_errno_setenv(int errnum, const char *name, const char *value, int overwrite);

The explain_errno_setenvfunction is used to obtain an explanation of an error returned by thesetenv(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

name The original name, exactly as passed to thesetenv(3) system call.

value The original value, exactly as passed to thesetenv(3) system call.

711

explain_setenv(3) explain_setenv(3)

overwrite
The original overwrite, exactly as passed to thesetenv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setenv(name, value, overwrite) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setenv(err, name, value,
overwrite));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setenv_or_die(3) function.

explain_message_setenv
void explain_message_setenv(char *message, int message_size, const char *name, const char *value, int
overwrite);

Theexplain_message_setenvfunction is used to obtain an explanation of an error returned by thesetenv(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

name The original name, exactly as passed to thesetenv(3) system call.

value The original value, exactly as passed to thesetenv(3) system call.

overwrite
The original overwrite, exactly as passed to thesetenv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setenv(name, value, overwrite) < 0)
{

char message[3000];
explain_message_setenv(message, sizeof(message), name, value,
overwrite);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setenv_or_die(3) function.

explain_message_errno_setenv
void explain_message_errno_setenv(char *message, int message_size, int errnum, const char *name, const
char *value, int overwrite);

The explain_message_errno_setenvfunction is used to obtain an explanation of an error returned by the
setenv(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

712

explain_setenv(3) explain_setenv(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

name The original name, exactly as passed to thesetenv(3) system call.

value The original value, exactly as passed to thesetenv(3) system call.

overwrite
The original overwrite, exactly as passed to thesetenv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setenv(name, value, overwrite) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setenv(message, sizeof(message), err,
name, value, overwrite);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setenv_or_die(3) function.

SEE ALSO
setenv(3)

change or add an environment variable

explain_setenv_or_die(3)
change or add an environment variable and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

713

explain_setenv_or_die(3) explain_setenv_or_die(3)

NAME
explain_setenv_or_die − change or add an environment variable and report errors

SYNOPSIS
#include <libexplain/setenv.h>

void explain_setenv_or_die(const char *name, const char *value, int overwrite);
int explain_setenv_on_error(const char *name, const char *value, int overwrite);

DESCRIPTION
Theexplain_setenv_or_diefunction is used to call thesetenv(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_setenv(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setenv_on_errorfunction is used to call thesetenv(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setenv(3) function, but still returns to the caller.

name The name, exactly as to be passed to thesetenv(3) system call.

value The value, exactly as to be passed to thesetenv(3) system call.

overwrite
The overwrite, exactly as to be passed to thesetenv(3) system call.

RETURN VALUE
The explain_setenv_or_diefunction only returns on success, seesetenv(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setenv_on_errorfunction always returns the value return by the wrappedsetenv(3) system
call.

EXAMPLE
Theexplain_setenv_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setenv_or_die(name, value, overwrite);

SEE ALSO
setenv(3)

change or add an environment variable

explain_setenv(3)
explainsetenv(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

714

explain_setgid(3) explain_setgid(3)

NAME
explain_setgid − explainsetgid(2) errors

SYNOPSIS
#include <libexplain/setgid.h>

const char *explain_setgid(gid_t gid);
const char *explain_errno_setgid(int errnum, gid_t gid);
void explain_message_setgid(char *message, int message_size, gid_t gid);
void explain_message_errno_setgid(char *message, int message_size, int errnum, gid_t gid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetgid(2) system call.

explain_setgid
const char *explain_setgid(gid_t gid);

The explain_setgidfunction is used to obtain an explanation of an error returned by thesetgid(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

gid The original gid, exactly as passed to thesetgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setgid(gid) < 0)
{

fprintf(stderr, "%s\n", explain_setgid(gid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setgid_or_die(3) function.

explain_errno_setgid
const char *explain_errno_setgid(int errnum, gid_t gid);

The explain_errno_setgidfunction is used to obtain an explanation of an error returned by thesetgid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

gid The original gid, exactly as passed to thesetgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setgid(gid) < 0)
{

715

explain_setgid(3) explain_setgid(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setgid(err, gid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setgid_or_die(3) function.

explain_message_setgid
void explain_message_setgid(char *message, int message_size, gid_t gid);

Theexplain_message_setgidfunction is used to obtain an explanation of an error returned by thesetgid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

gid The original gid, exactly as passed to thesetgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setgid(gid) < 0)
{

char message[3000];
explain_message_setgid(message, sizeof(message), gid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setgid_or_die(3) function.

explain_message_errno_setgid
void explain_message_errno_setgid(char *message, int message_size, int errnum, gid_t gid);

The explain_message_errno_setgidfunction is used to obtain an explanation of an error returned by the
setgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

gid The original gid, exactly as passed to thesetgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setgid(gid) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setgid(message, sizeof(message), err,
gid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

716

explain_setgid(3) explain_setgid(3)

The above code example is available pre−packaged as theexplain_setgid_or_die(3) function.

SEE ALSO
setgid(2)

set group identity

explain_setgid_or_die(3)
set group identity and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

717

explain_setgid_or_die(3) explain_setgid_or_die(3)

NAME
explain_setgid_or_die − set group identity and report errors

SYNOPSIS
#include <libexplain/setgid.h>

void explain_setgid_or_die(gid_t gid);
int explain_setgid_on_error(gid_t gid);

DESCRIPTION
Theexplain_setgid_or_diefunction is used to call thesetgid(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_setgid(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setgid_on_errorfunction is used to call thesetgid(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setgid(3) function, but still returns to the caller.

gid The gid, exactly as to be passed to thesetgid(2) system call.

RETURN VALUE
The explain_setgid_or_die function only returns on success, seesetgid(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setgid_on_error function always returns the value return by the wrappedsetgid(2) system
call.

EXAMPLE
Theexplain_setgid_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setgid_or_die(gid);

SEE ALSO
setgid(2)

set group identity

explain_setgid(3)
explainsetgid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

718

explain_setgrent(3) explain_setgrent(3)

NAME
explain_setgrent − explainsetgrent(3) errors

SYNOPSIS
#include <libexplain/setgrent.h>

const char *explain_setgrent(void);
const char *explain_errno_setgrent(int errnum, void);
void explain_message_setgrent(char *message, int message_size, void);
void explain_message_errno_setgrent(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetgrent(3) system call.

explain_setgrent
const char *explain_setgrent(void);

The explain_setgrent function is used to obtain an explanation of an error returned by thesetgrent(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setgrent();
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_setgrent());
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setgrent_or_die(3) function.

explain_errno_setgrent
const char *explain_errno_setgrent(int errnum, void);

The explain_errno_setgrent function is used to obtain an explanation of an error returned by the
setgrent(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setgrent();
if (result < 0 && errno != 0)

719

explain_setgrent(3) explain_setgrent(3)

{
int err = errno;

fprintf(stderr, "%s\n", explain_errno_setgrent(err,));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setgrent_or_die(3) function.

explain_message_setgrent
void explain_message_setgrent(char *message, int message_size, void);

The explain_message_setgrentfunction is used to obtain an explanation of an error returned by the
setgrent(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setgrent();
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_setgrent(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setgrent_or_die(3) function.

explain_message_errno_setgrent
void explain_message_errno_setgrent(char *message, int message_size, int errnum, void);

Theexplain_message_errno_setgrentfunction is used to obtain an explanation of an error returned by the
setgrent(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setgrent();
if (result < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_setgrent(message, sizeof(message), err,
);
fprintf(stderr, "%s\n", message);

720

explain_setgrent(3) explain_setgrent(3)

exit(EXIT_FAILURE);
}

The above code example is available pre−packaged as theexplain_setgrent_or_die(3) function.

SEE ALSO
setgrent(3)

rewind to the start of the group database

explain_setgrent_or_die(3)
rewind to the start of the group database and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

721

explain_setgrent_or_die(3) explain_setgrent_or_die(3)

NAME
explain_setgrent_or_die − rewind group database and report errors

SYNOPSIS
#include <libexplain/setgrent.h>

void explain_setgrent_or_die(void);
void explain_setgrent_on_error(void);

DESCRIPTION
Theexplain_setgrent_or_diefunction is used to call thesetgrent(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setgrent(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setgrent_on_error function is used to call thesetgrent(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setgrent(3) function, but still returns to the
caller.

RETURN VALUE
The explain_setgrent_or_diefunction only returns on success, seesetgrent(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setgrent_on_error function always returns the value return by the wrappedsetgrent(3)
system call.

EXAMPLE
Theexplain_setgrent_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setgrent_or_die();

SEE ALSO
setgrent(3)

rewind to the start of the group database

explain_setgrent(3)
explainsetgrent(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

722

explain_setgroups(3) explain_setgroups(3)

NAME
explain_setgroups − explain setgroups(2) errors

SYNOPSIS
#include <libexplain/setgroups.h>

const char *explain_setgroups(size_t data_size, const gid_t *data);
const char *explain_errno_setgroups(int errnum, size_t data_size, const gid_t *data);
void explain_message_setgroups(char *message, int message_size, size_t data_size, const gid_t *data);
void explain_message_errno_setgroups(char *message, int message_size, int errnum, size_t data_size,
const gid_t *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetgroups(2) system call.

explain_setgroups
const char *explain_setgroups(size_t data_size, const gid_t *data);

The explain_setgroupsfunction is used to obtain an explanation of an error returned by thesetgroups(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data_size
The original data_size, exactly as passed to thesetgroups(2) system call.

data The original data, exactly as passed to thesetgroups(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setgroups(data_size, data) < 0)
{

fprintf(stderr, "%s\n", explain_setgroups(data_size, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setgroups_or_die(3) function.

explain_errno_setgroups
const char *explain_errno_setgroups(int errnum, size_t data_size, const gid_t *data);

The explain_errno_setgroups function is used to obtain an explanation of an error returned by the
setgroups(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data_size
The original data_size, exactly as passed to thesetgroups(2) system call.

data The original data, exactly as passed to thesetgroups(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

723

explain_setgroups(3) explain_setgroups(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setgroups(data_size, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setgroups(err,
data_size, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setgroups_or_die(3) function.

explain_message_setgroups
void explain_message_setgroups(char *message, int message_size, size_t data_size, const gid_t *data);

The explain_message_setgroupsfunction is used to obtain an explanation of an error returned by the
setgroups(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data_size
The original data_size, exactly as passed to thesetgroups(2) system call.

data The original data, exactly as passed to thesetgroups(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setgroups(data_size, data) < 0)
{

char message[3000];
explain_message_setgroups(message, sizeof(message), data_size,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setgroups_or_die(3) function.

explain_message_errno_setgroups
void explain_message_errno_setgroups(char *message, int message_size, int errnum, size_t data_size,
const gid_t *data);

The explain_message_errno_setgroupsfunction is used to obtain an explanation of an error returned by
thesetgroups(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

724

explain_setgroups(3) explain_setgroups(3)

data_size
The original data_size, exactly as passed to thesetgroups(2) system call.

data The original data, exactly as passed to thesetgroups(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setgroups(data_size, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setgroups(message, sizeof(message), err,
data_size, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setgroups_or_die(3) function.

SEE ALSO
setgroups(2)

get/set list of supplementary group IDs

explain_setgroups_or_die(3)
get/set list of supplementary group IDs and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

725

explain_setgroups_or_die(3) explain_setgroups_or_die(3)

NAME
explain_setgroups_or_die − set supplementary group IDs and report errors

SYNOPSIS
#include <libexplain/setgroups.h>

void explain_setgroups_or_die(size_t data_size, const gid_t *data);
int explain_setgroups_on_error(size_t data_size, const gid_t *data);

DESCRIPTION
The explain_setgroups_or_diefunction is used to call thesetgroups(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setgroups(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_setgroups_on_errorfunction is used to call thesetgroups(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setgroups(3) function, but still returns to
the caller.

data_size
The data_size, exactly as to be passed to thesetgroups(2) system call.

data The data, exactly as to be passed to thesetgroups(2) system call.

RETURN VALUE
The explain_setgroups_or_diefunction only returns on success, seesetgroups(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_setgroups_on_errorfunction always returns the value return by the wrappedsetgroups(2)
system call.

EXAMPLE
The explain_setgroups_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_setgroups_or_die(data_size, data);

SEE ALSO
setgroups(2)

get/set list of supplementary group IDs

explain_setgroups(3)
explainsetgroups(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

726

explain_sethostname(3) explain_sethostname(3)

NAME
explain_sethostname − explain sethostname(2) errors

SYNOPSIS
#include <libexplain/sethostname.h>

const char *explain_sethostname(const char *name, size_t name_size);
const char *explain_errno_sethostname(int errnum, const char *name, size_t name_size);
void explain_message_sethostname(char *message, int message_size, const char *name, size_t name_size);
void explain_message_errno_sethostname(char *message, int message_size, int errnum, const char *name,
size_t name_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesethostname(2) system call.

explain_sethostname
const char *explain_sethostname(const char *name, size_t name_size);

The explain_sethostnamefunction is used to obtain an explanation of an error returned by the
sethostname(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (sethostname(name, name_size) < 0)
{

fprintf(stderr, "%s\n", explain_sethostname(name, name_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_sethostname_or_die(3) function.

name The original name, exactly as passed to thesethostname(2) system call.

name_size
The original name_size, exactly as passed to thesethostname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_sethostname
const char *explain_errno_sethostname(int errnum, const char *name, size_t name_size);

The explain_errno_sethostnamefunction is used to obtain an explanation of an error returned by the
sethostname(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (sethostname(name, name_size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_sethostname(err, name, name_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_sethostname_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

727

explain_sethostname(3) explain_sethostname(3)

explained and this function, because many libc functions will alter the value oferrno.

name The original name, exactly as passed to thesethostname(2) system call.

name_size
The original name_size, exactly as passed to thesethostname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_sethostname
void explain_message_sethostname(char *message, int message_size, const char *name, size_t name_size);

The explain_message_sethostnamefunction is used to obtain an explanation of an error returned by the
sethostname(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (sethostname(name, name_size) < 0)
{

char message[3000];
explain_message_sethostname(message, sizeof(message), name, name_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_sethostname_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

name The original name, exactly as passed to thesethostname(2) system call.

name_size
The original name_size, exactly as passed to thesethostname(2) system call.

explain_message_errno_sethostname
void explain_message_errno_sethostname(char *message, int message_size, int errnum, const char *name,
size_t name_size);

The explain_message_errno_sethostnamefunction is used to obtain an explanation of an error returned
by the sethostname(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (sethostname(name, name_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_sethostname(message, sizeof(message), err, name,

name_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_sethostname_or_die(3) function.

728

explain_sethostname(3) explain_sethostname(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

name The original name, exactly as passed to thesethostname(2) system call.

name_size
The original name_size, exactly as passed to thesethostname(2) system call.

SEE ALSO
sethostname(2)

get/set hostname

explain_sethostname_or_die(3)
get/set hostname and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

729

explain_sethostname_or_die(3) explain_sethostname_or_die(3)

NAME
explain_sethostname_or_die − get/set hostname and report errors

SYNOPSIS
#include <libexplain/sethostname.h>

void explain_sethostname_or_die(const char *name, size_t name_size);
intexplain_sethostname_on_error(const char *name, size_t name_size);

DESCRIPTION
The explain_sethostname_or_diefunction is used to call thesethostname(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_sethostname(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

Theexplain_sethostname_on_errorfunction is used to call thesethostname(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_sethostname(3) function, but still returns to
the caller.

name The name, exactly as to be passed to thesethostname(2) system call.

name_size
The name_size, exactly as to be passed to thesethostname(2) system call.

RETURN VALUE
The explain_sethostname_or_diefunction only returns on success, seesethostname(2) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_sethostname_on_error function always returns the value return by the wrapped
sethostname(2) system call.

EXAMPLE
The explain_sethostname_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_sethostname_or_die(name, name_size);

SEE ALSO
sethostname(2)

get/set hostname

explain_sethostname(3)
explainsethostname(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

730

explain_setlinebuf(3) explain_setlinebuf(3)

NAME
explain_setlinebuf − explainsetlinebuf(3) errors

SYNOPSIS
#include <libexplain/setlinebuf.h>

const char *explain_setlinebuf(FILE *fp);
const char *explain_errno_setlinebuf(int errnum, FILE *fp);
void explain_message_setlinebuf(char *message, int message_size, FILE *fp);
void explain_message_errno_setlinebuf(char *message, int message_size, int errnum, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetlinebuf(3) system call.

explain_setlinebuf
const char *explain_setlinebuf(FILE *fp);

The explain_setlinebuf function is used to obtain an explanation of an error returned by thesetlinebuf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thesetlinebuf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setlinebuf(fp);
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_setlinebuf(fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setlinebuf_or_die(3) function.

explain_errno_setlinebuf
const char *explain_errno_setlinebuf(int errnum, FILE *fp);

The explain_errno_setlinebuf function is used to obtain an explanation of an error returned by the
setlinebuf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thesetlinebuf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

731

explain_setlinebuf(3) explain_setlinebuf(3)

errno = 0;
void result = setlinebuf(fp);
if (result < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setlinebuf(err, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setlinebuf_or_die(3) function.

explain_message_setlinebuf
void explain_message_setlinebuf(char *message, int message_size, FILE *fp);

The explain_message_setlinebuffunction is used to obtain an explanation of an error returned by the
setlinebuf(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thesetlinebuf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setlinebuf(fp);
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_setlinebuf(message, sizeof(message), fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setlinebuf_or_die(3) function.

explain_message_errno_setlinebuf
void explain_message_errno_setlinebuf(char *message, int message_size, int errnum, FILE *fp);

The explain_message_errno_setlinebuffunction is used to obtain an explanation of an error returned by
thesetlinebuf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thesetlinebuf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
void result = setlinebuf(fp);
if (result < 0 && errno != 0)

732

explain_setlinebuf(3) explain_setlinebuf(3)

{
int err = errno;
char message[3000];

explain_message_errno_setlinebuf(message, sizeof(message),
err, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setlinebuf_or_die(3) function.

SEE ALSO
setlinebuf(3)

stream buffering operations

explain_setlinebuf_or_die(3)
stream buffering operations and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

733

explain_setlinebuf_or_die(3) explain_setlinebuf_or_die(3)

NAME
explain_setlinebuf_or_die − stream buffering operations and report errors

SYNOPSIS
#include <libexplain/setlinebuf.h>

void explain_setlinebuf_or_die(FILE *fp);
void explain_setlinebuf_on_error(FILE *fp);

DESCRIPTION
The explain_setlinebuf_or_die function is used to call thesetlinebuf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setlinebuf(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_setlinebuf_on_error function is used to call thesetlinebuf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setlinebuf(3) function, but still returns to
the caller.

fp The fp, exactly as to be passed to thesetlinebuf(3) system call.

RETURN VALUE
The explain_setlinebuf_or_diefunction only returns on success, seesetlinebuf(3) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_setlinebuf_on_error function always returns the value return by the wrappedsetlinebuf(3)
system call.

EXAMPLE
The explain_setlinebuf_or_die function is intended to be used in a fashion similar to the following
example:

explain_setlinebuf_or_die(fp);

SEE ALSO
setlinebuf(3)

stream buffering operations

explain_setlinebuf(3)
explainsetlinebuf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

734

explain_setpgid(3) explain_setpgid(3)

NAME
explain_setpgid − explainsetpgid(2) errors

SYNOPSIS
#include <libexplain/setpgid.h>

const char *explain_setpgid(pid_t pid, pid_t pgid);
const char *explain_errno_setpgid(int errnum, pid_t pid, pid_t pgid);
void explain_message_setpgid(char *message, int message_size, pid_t pid, pid_t pgid);
void explain_message_errno_setpgid(char *message, int message_size, int errnum, pid_t pid, pid_t pgid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetpgid(2) system call.

explain_setpgid
const char *explain_setpgid(pid_t pid, pid_t pgid);

Theexplain_setpgidfunction is used to obtain an explanation of an error returned by thesetpgid(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pid The original pid, exactly as passed to thesetpgid(2) system call.

pgid The original pgid, exactly as passed to thesetpgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpgid(pid, pgid) < 0)
{

fprintf(stderr, "%s\n", explain_setpgid(pid, pgid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpgid_or_die(3) function.

explain_errno_setpgid
const char *explain_errno_setpgid(int errnum, pid_t pid, pid_t pgid);

Theexplain_errno_setpgidfunction is used to obtain an explanation of an error returned by thesetpgid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thesetpgid(2) system call.

pgid The original pgid, exactly as passed to thesetpgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

735

explain_setpgid(3) explain_setpgid(3)

if (setpgid(pid, pgid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setpgid(err, pid,
pgid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpgid_or_die(3) function.

explain_message_setpgid
void explain_message_setpgid(char *message, int message_size, pid_t pid, pid_t pgid);

The explain_message_setpgidfunction is used to obtain an explanation of an error returned by the
setpgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to thesetpgid(2) system call.

pgid The original pgid, exactly as passed to thesetpgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpgid(pid, pgid) < 0)
{

char message[3000];
explain_message_setpgid(message, sizeof(message), pid, pgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpgid_or_die(3) function.

explain_message_errno_setpgid
void explain_message_errno_setpgid(char *message, int message_size, int errnum, pid_t pid, pid_t pgid);

Theexplain_message_errno_setpgidfunction is used to obtain an explanation of an error returned by the
setpgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thesetpgid(2) system call.

pgid The original pgid, exactly as passed to thesetpgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpgid(pid, pgid) < 0)
{

int err = errno;

736

explain_setpgid(3) explain_setpgid(3)

char message[3000];
explain_message_errno_setpgid(message, sizeof(message), err,
pid, pgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpgid_or_die(3) function.

SEE ALSO
setpgid(2)

set process group

explain_setpgid_or_die(3)
set process group and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

737

explain_setpgid_or_die(3) explain_setpgid_or_die(3)

NAME
explain_setpgid_or_die − set process group and report errors

SYNOPSIS
#include <libexplain/setpgid.h>

void explain_setpgid_or_die(pid_t pid, pid_t pgid);
int explain_setpgid_on_error(pid_t pid, pid_t pgid);

DESCRIPTION
The explain_setpgid_or_diefunction is used to call thesetpgid(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setpgid(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setpgid_on_error function is used to call thesetpgid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setpgid(3) function, but still returns to the
caller.

pid The pid, exactly as to be passed to thesetpgid(2) system call.

pgid The pgid, exactly as to be passed to thesetpgid(2) system call.

RETURN VALUE
The explain_setpgid_or_diefunction only returns on success, seesetpgid(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_setpgid_on_errorfunction always returns the value return by the wrappedsetpgid(2) system
call.

EXAMPLE
Theexplain_setpgid_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setpgid_or_die(pid, pgid);

SEE ALSO
setpgid(2)

set process group

explain_setpgid(3)
explainsetpgid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

738

explain_setpgrp(3) explain_setpgrp(3)

NAME
explain_setpgrp − explainsetpgrp(2) errors

SYNOPSIS
#include <libexplain/setpgrp.h>

const char *explain_setpgrp(pid_t pid, pid_t pgid);
const char *explain_errno_setpgrp(int errnum, pid_t pid, pid_t pgid);
void explain_message_setpgrp(char *message, int message_size, pid_t pid, pid_t pgid);
void explain_message_errno_setpgrp(char *message, int message_size, int errnum, pid_t pid, pid_t pgid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetpgrp(2) system call.

Note: thesetpgrp(2) function has two implementations. TheSystem V version has no arguments, while the
BSD version has two arguments. For simplicity of implementation, the argument list seen here includes the
pid andpgidarguments.

The System Vgetpgid() semantics can be obtained by callingsetpgrp(0, 0) on systems with the
BSD version, and this is the API for libexplain, even on systems that do not use the BSD API.

explain_setpgrp
const char *explain_setpgrp(pid_t pid, pid_t pgid);

The explain_setpgrp function is used to obtain an explanation of an error returned by thesetpgrp(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pid The original pid, exactly as passed to thesetpgrp(2) system call.

pgid The original pgid, exactly as passed to thesetpgrp(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpgrp(pid, pgid) < 0)
{

fprintf(stderr, "%s\n", explain_setpgrp(pid, pgid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpgrp_or_die(3) function.

explain_errno_setpgrp
const char *explain_errno_setpgrp(int errnum, pid_t pid, pid_t pgid);

Theexplain_errno_setpgrpfunction is used to obtain an explanation of an error returned by thesetpgrp(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pid The original pid, exactly as passed to thesetpgrp(2) system call.

pgid The original pgid, exactly as passed to thesetpgrp(2) system call.

739

explain_setpgrp(3) explain_setpgrp(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpgrp(pid, pgid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setpgrp(err, pid,
pgid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpgrp_or_die(3) function.

explain_message_setpgrp
void explain_message_setpgrp(char *message, int message_size, pid_t pid, pid_t pgid);

The explain_message_setpgrpfunction is used to obtain an explanation of an error returned by the
setpgrp(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pid The original pid, exactly as passed to thesetpgrp(2) system call.

pgid The original pgid, exactly as passed to thesetpgrp(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpgrp(pid, pgid) < 0)
{

char message[3000];
explain_message_setpgrp(message, sizeof(message), pid, pgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpgrp_or_die(3) function.

explain_message_errno_setpgrp
void explain_message_errno_setpgrp(char *message, int message_size, int errnum, pid_t pid, pid_t pgid);

Theexplain_message_errno_setpgrpfunction is used to obtain an explanation of an error returned by the
setpgrp(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

740

explain_setpgrp(3) explain_setpgrp(3)

pid The original pid, exactly as passed to thesetpgrp(2) system call.

pgid The original pgid, exactly as passed to thesetpgrp(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpgrp(pid, pgid) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setpgrp(message, sizeof(message), err,
pid, pgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpgrp_or_die(3) function.

SEE ALSO
setpgrp(2)

set process group

explain_setpgrp_or_die(3)
set process group and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

741

explain_setpgrp_or_die(3) explain_setpgrp_or_die(3)

NAME
explain_setpgrp_or_die − set process group and report errors

SYNOPSIS
#include <libexplain/setpgrp.h>

void explain_setpgrp_or_die(pid_t pid, pid_t pgid);
int explain_setpgrp_on_error(pid_t pid, pid_t pgid);

DESCRIPTION
Theexplain_setpgrp_or_diefunction is used to call thesetpgrp(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setpgrp(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setpgrp_on_error function is used to call thesetpgrp(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setpgrp(3) function, but still returns to the
caller.

pid The pid, exactly as to be passed to thesetpgrp(2) system call.

pgid The pgid, exactly as to be passed to thesetpgrp(2) system call.

Note: thesetpgrp(2) function has two implementations. TheSystem V version has no arguments, while the
BSD version has two arguments. For simplicity of implementation, the argument list seen here includes the
pid andpgidarguments.

The System Vgetpgid() semantics can be obtained by callingsetpgrp(0, 0) on systems with the
BSD version, and this is the API for libexplain, even on systems that do not use the BSD API.

RETURN VALUE
The explain_setpgrp_or_diefunction only returns on success, seesetpgrp(2) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_setpgrp_on_errorfunction always returns the value return by the wrappedsetpgrp(2) system
call.

EXAMPLE
Theexplain_setpgrp_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setpgrp_or_die(pid, pgid);

SEE ALSO
setpgrp(2)

set process group

explain_setpgrp(3)
explainsetpgrp(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

742

explain_setpriority(3) explain_setpriority(3)

NAME
explain_setpriority − explainsetpriority(2) errors

SYNOPSIS
#include <libexplain/setpriority.h>

const char *explain_setpriority(int which, int who, int prio);
const char *explain_errno_setpriority(int errnum, int which, int who, int prio);
void explain_message_setpriority(char *message, int message_size, int which, int who, int prio);
void explain_message_errno_setpriority(char *message, int message_size, int errnum, int which, int who,
int prio);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetpriority(2) system call.

explain_setpriority
const char *explain_setpriority(int which, int who, int prio);

Theexplain_setpriority function is used to obtain an explanation of an error returned by thesetpriority(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

which The original which, exactly as passed to thesetpriority(2) system call.

who The original who, exactly as passed to thesetpriority(2) system call.

prio The original prio, exactly as passed to thesetpriority(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpriority(which, who, prio) < 0)
{

fprintf(stderr, "%s\n", explain_setpriority(which, who,
prio));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpriority_or_die(3) function.

explain_errno_setpriority
const char *explain_errno_setpriority(int errnum, int which, int who, int prio);

The explain_errno_setpriority function is used to obtain an explanation of an error returned by the
setpriority(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

which The original which, exactly as passed to thesetpriority(2) system call.

who The original who, exactly as passed to thesetpriority(2) system call.

prio The original prio, exactly as passed to thesetpriority(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

743

explain_setpriority(3) explain_setpriority(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpriority(which, who, prio) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setpriority(err, which,
who, prio));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpriority_or_die(3) function.

explain_message_setpriority
void explain_message_setpriority(char *message, int message_size, int which, int who, int prio);

The explain_message_setpriorityfunction is used to obtain an explanation of an error returned by the
setpriority(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

which The original which, exactly as passed to thesetpriority(2) system call.

who The original who, exactly as passed to thesetpriority(2) system call.

prio The original prio, exactly as passed to thesetpriority(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpriority(which, who, prio) < 0)
{

char message[3000];
explain_message_setpriority(message, sizeof(message), which,
who, prio);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpriority_or_die(3) function.

explain_message_errno_setpriority
void explain_message_errno_setpriority(char *message, int message_size, int errnum, int which, int who,
int prio);

Theexplain_message_errno_setpriorityfunction is used to obtain an explanation of an error returned by
thesetpriority(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

744

explain_setpriority(3) explain_setpriority(3)

explained and this function, because many libc functions will alter the value oferrno.

which The original which, exactly as passed to thesetpriority(2) system call.

who The original who, exactly as passed to thesetpriority(2) system call.

prio The original prio, exactly as passed to thesetpriority(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setpriority(which, who, prio) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setpriority(message, sizeof(message),
err, which, who, prio);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setpriority_or_die(3) function.

SEE ALSO
setpriority(2)

set program scheduling priority

explain_setpriority_or_die(3)
set program scheduling priority and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

745

explain_setpriority_or_die(3) explain_setpriority_or_die(3)

NAME
explain_setpriority_or_die − set program scheduling priority and report errors

SYNOPSIS
#include <libexplain/setpriority.h>

void explain_setpriority_or_die(int which, int who, int prio);
int explain_setpriority_on_error(int which, int who, int prio);

DESCRIPTION
The explain_setpriority_or_die function is used to call thesetpriority(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setpriority(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_setpriority_on_error function is used to call thesetpriority(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setpriority(3) function, but still returns to
the caller.

which The which, exactly as to be passed to thesetpriority(2) system call.

who The who, exactly as to be passed to thesetpriority(2) system call.

prio The prio, exactly as to be passed to thesetpriority(2) system call.

RETURN VALUE
Theexplain_setpriority_or_die function only returns on success, seesetpriority(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_setpriority_on_error function always returns the value return by the wrappedsetpriority(2)
system call.

EXAMPLE
The explain_setpriority_or_die function is intended to be used in a fashion similar to the following
example:

explain_setpriority_or_die(which, who, prio);

SEE ALSO
setpriority(2)

set program scheduling priority

explain_setpriority(3)
explainsetpriority(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

746

explain_setregid(3) explain_setregid(3)

NAME
explain_setregid − explainsetregid(2) errors

SYNOPSIS
#include <libexplain/setregid.h>

const char *explain_setregid(gid_t rgid, gid_t egid);
const char *explain_errno_setregid(int errnum, gid_t rgid, gid_t egid);
void explain_message_setregid(char *message, int message_size, gid_t rgid, gid_t egid);
void explain_message_errno_setregid(char *message, int message_size, int errnum, gid_t rgid, gid_t egid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetregid(2) system call.

explain_setregid
const char *explain_setregid(gid_t rgid, gid_t egid);

The explain_setregid function is used to obtain an explanation of an error returned by thesetregid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

rgid The original rgid, exactly as passed to thesetregid(2) system call.

egid The original egid, exactly as passed to thesetregid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setregid(rgid, egid) < 0)
{

fprintf(stderr, "%s\n", explain_setregid(rgid, egid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setregid_or_die(3) function.

explain_errno_setregid
const char *explain_errno_setregid(int errnum, gid_t rgid, gid_t egid);

The explain_errno_setregid function is used to obtain an explanation of an error returned by the
setregid(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

rgid The original rgid, exactly as passed to thesetregid(2) system call.

egid The original egid, exactly as passed to thesetregid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

747

explain_setregid(3) explain_setregid(3)

if (setregid(rgid, egid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setregid(err, rgid,
egid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setregid_or_die(3) function.

explain_message_setregid
void explain_message_setregid(char *message, int message_size, gid_t rgid, gid_t egid);

The explain_message_setregidfunction is used to obtain an explanation of an error returned by the
setregid(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

rgid The original rgid, exactly as passed to thesetregid(2) system call.

egid The original egid, exactly as passed to thesetregid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setregid(rgid, egid) < 0)
{

char message[3000];
explain_message_setregid(message, sizeof(message), rgid,
egid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setregid_or_die(3) function.

explain_message_errno_setregid
void explain_message_errno_setregid(char *message, int message_size, int errnum, gid_t rgid, gid_t egid);

Theexplain_message_errno_setregidfunction is used to obtain an explanation of an error returned by the
setregid(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

rgid The original rgid, exactly as passed to thesetregid(2) system call.

egid The original egid, exactly as passed to thesetregid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setregid(rgid, egid) < 0)
{

748

explain_setregid(3) explain_setregid(3)

int err = errno;
char message[3000];

explain_message_errno_setregid(message, sizeof(message), err,
rgid, egid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setregid_or_die(3) function.

SEE ALSO
setregid(2)

set real and/or effective group ID

explain_setregid_or_die(3)
set real and/or effective group ID and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

749

explain_setregid_or_die(3) explain_setregid_or_die(3)

NAME
explain_setregid_or_die − set real and/or effective group ID and report errors

SYNOPSIS
#include <libexplain/setregid.h>

void explain_setregid_or_die(gid_t rgid, gid_t egid);
int explain_setregid_on_error(gid_t rgid, gid_t egid);

DESCRIPTION
Theexplain_setregid_or_diefunction is used to call thesetregid(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setregid(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setregid_on_error function is used to call thesetregid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setregid(3) function, but still returns to the
caller.

rgid The rgid, exactly as to be passed to thesetregid(2) system call.

egid The egid, exactly as to be passed to thesetregid(2) system call.

RETURN VALUE
The explain_setregid_or_diefunction only returns on success, seesetregid(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setregid_on_error function always returns the value return by the wrappedsetregid(2)
system call.

EXAMPLE
Theexplain_setregid_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setregid_or_die(rgid, egid);

SEE ALSO
setregid(2)

set real and/or effective group ID

explain_setregid(3)
explainsetregid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

750

explain_setresgid(3) explain_setresgid(3)

NAME
explain_setresgid − explainsetresgid(2) errors

SYNOPSIS
#include <libexplain/setresgid.h>

const char *explain_setresgid(gid_t rgid, gid_t egid, gid_t sgid);
const char *explain_errno_setresgid(int errnum, gid_t rgid, gid_t egid, gid_t sgid);
void explain_message_setresgid(char *message, int message_size, gid_t rgid, gid_t egid, gid_t sgid);
void explain_message_errno_setresgid(char *message, int message_size, int errnum, gid_t rgid, gid_t egid,
gid_t sgid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetresgid(2) system call.

explain_setresgid
const char *explain_setresgid(gid_t rgid, gid_t egid, gid_t sgid);

The explain_setresgidfunction is used to obtain an explanation of an error returned by thesetresgid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

rgid The original rgid, exactly as passed to thesetresgid(2) system call.

egid The original egid, exactly as passed to thesetresgid(2) system call.

sgid The original sgid, exactly as passed to thesetresgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setresgid(rgid, egid, sgid) < 0)
{

fprintf(stderr, "%s\n", explain_setresgid(rgid, egid, sgid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setresgid_or_die(3) function.

explain_errno_setresgid
const char *explain_errno_setresgid(int errnum, gid_t rgid, gid_t egid, gid_t sgid);

The explain_errno_setresgid function is used to obtain an explanation of an error returned by the
setresgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

rgid The original rgid, exactly as passed to thesetresgid(2) system call.

egid The original egid, exactly as passed to thesetresgid(2) system call.

sgid The original sgid, exactly as passed to thesetresgid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

751

explain_setresgid(3) explain_setresgid(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setresgid(rgid, egid, sgid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setresgid(err, rgid,
egid, sgid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setresgid_or_die(3) function.

explain_message_setresgid
void explain_message_setresgid(char *message, int message_size, gid_t rgid, gid_t egid, gid_t sgid);

The explain_message_setresgidfunction is used to obtain an explanation of an error returned by the
setresgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

rgid The original rgid, exactly as passed to thesetresgid(2) system call.

egid The original egid, exactly as passed to thesetresgid(2) system call.

sgid The original sgid, exactly as passed to thesetresgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setresgid(rgid, egid, sgid) < 0)
{

char message[3000];
explain_message_setresgid(message, sizeof(message), rgid,
egid, sgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setresgid_or_die(3) function.

explain_message_errno_setresgid
void explain_message_errno_setresgid(char *message, int message_size, int errnum, gid_t rgid, gid_t egid,
gid_t sgid);

The explain_message_errno_setresgidfunction is used to obtain an explanation of an error returned by
the setresgid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

752

explain_setresgid(3) explain_setresgid(3)

rgid The original rgid, exactly as passed to thesetresgid(2) system call.

egid The original egid, exactly as passed to thesetresgid(2) system call.

sgid The original sgid, exactly as passed to thesetresgid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setresgid(rgid, egid, sgid) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setresgid(message, sizeof(message), err,
rgid, egid, sgid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setresgid_or_die(3) function.

SEE ALSO
setresgid(2)

set real, effective and saved group ID

explain_setresgid_or_die(3)
set real, effective and saved group ID and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

753

explain_setresgid_or_die(3) explain_setresgid_or_die(3)

NAME
explain_setresgid_or_die − set r/e/s group ID and report errors

SYNOPSIS
#include <libexplain/setresgid.h>

void explain_setresgid_or_die(gid_t rgid, gid_t egid, gid_t sgid);
int explain_setresgid_on_error(gid_t rgid, gid_t egid, gid_t sgid);

DESCRIPTION
The explain_setresgid_or_die function is used to call thesetresgid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setresgid(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_setresgid_on_error function is used to call thesetresgid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setresgid(3) function, but still returns to the
caller.

rgid The rgid, exactly as to be passed to thesetresgid(2) system call.

egid The egid, exactly as to be passed to thesetresgid(2) system call.

sgid The sgid, exactly as to be passed to thesetresgid(2) system call.

RETURN VALUE
Theexplain_setresgid_or_diefunction only returns on success, seesetresgid(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setresgid_on_errorfunction always returns the value return by the wrappedsetresgid(2)
system call.

EXAMPLE
The explain_setresgid_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_setresgid_or_die(rgid, egid, sgid);

SEE ALSO
setresgid(2)

set real, effective and saved group ID

explain_setresgid(3)
explainsetresgid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

754

explain_setresuid(3) explain_setresuid(3)

NAME
explain_setresuid − explainsetresuid(2) errors

SYNOPSIS
#include <libexplain/setresuid.h>

const char *explain_setresuid(uid_t ruid, uid_t euid, uid_t suid);
const char *explain_errno_setresuid(int errnum, uid_t ruid, uid_t euid, uid_t suid);
void explain_message_setresuid(char *message, int message_size, uid_t ruid, uid_t euid, uid_t suid);
void explain_message_errno_setresuid(char *message, int message_size, int errnum, uid_t ruid, uid_t euid,
uid_t suid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetresuid(2) system call.

explain_setresuid
const char *explain_setresuid(uid_t ruid, uid_t euid, uid_t suid);

The explain_setresuidfunction is used to obtain an explanation of an error returned by thesetresuid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

ruid The original ruid, exactly as passed to thesetresuid(2) system call.

euid The original euid, exactly as passed to thesetresuid(2) system call.

suid The original suid, exactly as passed to thesetresuid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setresuid(ruid, euid, suid) < 0)
{

fprintf(stderr, "%s\n", explain_setresuid(ruid, euid, suid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setresuid_or_die(3) function.

explain_errno_setresuid
const char *explain_errno_setresuid(int errnum, uid_t ruid, uid_t euid, uid_t suid);

The explain_errno_setresuid function is used to obtain an explanation of an error returned by the
setresuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ruid The original ruid, exactly as passed to thesetresuid(2) system call.

euid The original euid, exactly as passed to thesetresuid(2) system call.

suid The original suid, exactly as passed to thesetresuid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

755

explain_setresuid(3) explain_setresuid(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setresuid(ruid, euid, suid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setresuid(err, ruid,
euid, suid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setresuid_or_die(3) function.

explain_message_setresuid
void explain_message_setresuid(char *message, int message_size, uid_t ruid, uid_t euid, uid_t suid);

The explain_message_setresuidfunction is used to obtain an explanation of an error returned by the
setresuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

ruid The original ruid, exactly as passed to thesetresuid(2) system call.

euid The original euid, exactly as passed to thesetresuid(2) system call.

suid The original suid, exactly as passed to thesetresuid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setresuid(ruid, euid, suid) < 0)
{

char message[3000];
explain_message_setresuid(message, sizeof(message), ruid,
euid, suid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setresuid_or_die(3) function.

explain_message_errno_setresuid
void explain_message_errno_setresuid(char *message, int message_size, int errnum, uid_t ruid, uid_t euid,
uid_t suid);

The explain_message_errno_setresuidfunction is used to obtain an explanation of an error returned by
the setresuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

756

explain_setresuid(3) explain_setresuid(3)

ruid The original ruid, exactly as passed to thesetresuid(2) system call.

euid The original euid, exactly as passed to thesetresuid(2) system call.

suid The original suid, exactly as passed to thesetresuid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setresuid(ruid, euid, suid) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setresuid(message, sizeof(message), err,
ruid, euid, suid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setresuid_or_die(3) function.

SEE ALSO
setresuid(2)

set real, effective and saved user ID

explain_setresuid_or_die(3)
set real, effective and saved user ID and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

757

explain_setresuid_or_die(3) explain_setresuid_or_die(3)

NAME
explain_setresuid_or_die − set r/e/s user ID and report errors

SYNOPSIS
#include <libexplain/setresuid.h>

void explain_setresuid_or_die(uid_t ruid, uid_t euid, uid_t suid);
int explain_setresuid_on_error(uid_t ruid, uid_t euid, uid_t suid);

DESCRIPTION
The explain_setresuid_or_die function is used to call thesetresuid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setresuid(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_setresuid_on_error function is used to call thesetresuid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setresuid(3) function, but still returns to the
caller.

ruid The ruid, exactly as to be passed to thesetresuid(2) system call.

euid The euid, exactly as to be passed to thesetresuid(2) system call.

suid The suid, exactly as to be passed to thesetresuid(2) system call.

RETURN VALUE
Theexplain_setresuid_or_diefunction only returns on success, seesetresuid(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setresuid_on_error function always returns the value return by the wrappedsetresuid(2)
system call.

EXAMPLE
The explain_setresuid_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_setresuid_or_die(ruid, euid, suid);

SEE ALSO
setresuid(2)

set real, effective and saved user ID

explain_setresuid(3)
explainsetresuid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

758

explain_setreuid(3) explain_setreuid(3)

NAME
explain_setreuid − explainsetreuid(2) errors

SYNOPSIS
#include <libexplain/setreuid.h>

const char *explain_setreuid(uid_t ruid, uid_t euid);
const char *explain_errno_setreuid(int errnum, uid_t ruid, uid_t euid);
void explain_message_setreuid(char *message, int message_size, uid_t ruid, uid_t euid);
void explain_message_errno_setreuid(char *message, int message_size, int errnum, uid_t ruid, uid_t euid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetreuid(2) system call.

explain_setreuid
const char *explain_setreuid(uid_t ruid, uid_t euid);

The explain_setreuid function is used to obtain an explanation of an error returned by thesetreuid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

ruid The original ruid, exactly as passed to thesetreuid(2) system call.

euid The original euid, exactly as passed to thesetreuid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setreuid(ruid, euid) < 0)
{

fprintf(stderr, "%s\n", explain_setreuid(ruid, euid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setreuid_or_die(3) function.

explain_errno_setreuid
const char *explain_errno_setreuid(int errnum, uid_t ruid, uid_t euid);

The explain_errno_setreuid function is used to obtain an explanation of an error returned by the
setreuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ruid The original ruid, exactly as passed to thesetreuid(2) system call.

euid The original euid, exactly as passed to thesetreuid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

759

explain_setreuid(3) explain_setreuid(3)

if (setreuid(ruid, euid) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setreuid(err, ruid,
euid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setreuid_or_die(3) function.

explain_message_setreuid
void explain_message_setreuid(char *message, int message_size, uid_t ruid, uid_t euid);

The explain_message_setreuidfunction is used to obtain an explanation of an error returned by the
setreuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

ruid The original ruid, exactly as passed to thesetreuid(2) system call.

euid The original euid, exactly as passed to thesetreuid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setreuid(ruid, euid) < 0)
{

char message[3000];
explain_message_setreuid(message, sizeof(message), ruid,
euid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setreuid_or_die(3) function.

explain_message_errno_setreuid
void explain_message_errno_setreuid(char *message, int message_size, int errnum, uid_t ruid, uid_t euid);

Theexplain_message_errno_setreuidfunction is used to obtain an explanation of an error returned by the
setreuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

ruid The original ruid, exactly as passed to thesetreuid(2) system call.

euid The original euid, exactly as passed to thesetreuid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setreuid(ruid, euid) < 0)
{

760

explain_setreuid(3) explain_setreuid(3)

int err = errno;
char message[3000];

explain_message_errno_setreuid(message, sizeof(message), err,
ruid, euid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setreuid_or_die(3) function.

SEE ALSO
setreuid(2)

set the real and effective user ID

explain_setreuid_or_die(3)
set the real and effective user ID and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

761

explain_setreuid_or_die(3) explain_setreuid_or_die(3)

NAME
explain_setreuid_or_die − set the real and effective user ID and report errors

SYNOPSIS
#include <libexplain/setreuid.h>

void explain_setreuid_or_die(uid_t ruid, uid_t euid);
int explain_setreuid_on_error(uid_t ruid, uid_t euid);

DESCRIPTION
Theexplain_setreuid_or_diefunction is used to call thesetreuid(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setreuid(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setreuid_on_error function is used to call thesetreuid(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setreuid(3) function, but still returns to the
caller.

ruid The ruid, exactly as to be passed to thesetreuid(2) system call.

euid The euid, exactly as to be passed to thesetreuid(2) system call.

RETURN VALUE
The explain_setreuid_or_diefunction only returns on success, seesetreuid(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setreuid_on_error function always returns the value return by the wrappedsetreuid(2)
system call.

EXAMPLE
Theexplain_setreuid_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setreuid_or_die(ruid, euid);

SEE ALSO
setreuid(2)

set the real and effective user ID

explain_setreuid(3)
explainsetreuid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

762

explain_setsid(3) explain_setsid(3)

NAME
explain_setsid − explainsetsid(2) errors

SYNOPSIS
#include <libexplain/setsid.h>

const char *explain_setsid(void);
const char *explain_errno_setsid(int errnum, void);
void explain_message_setsid(char *message, int message_size, void);
void explain_message_errno_setsid(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetsid(2) system call.

explain_setsid
const char *explain_setsid(void);

The explain_setsidfunction is used to obtain an explanation of an error returned by thesetsid(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = setsid();
if (result < 0)
{

fprintf(stderr, "%s\n", explain_setsid());
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setsid_or_die(3) function.

explain_errno_setsid
const char *explain_errno_setsid(int errnum, void);

The explain_errno_setsidfunction is used to obtain an explanation of an error returned by thesetsid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = setsid();
if (result < 0)
{

int err = errno;

763

explain_setsid(3) explain_setsid(3)

fprintf(stderr, "%s\n", explain_errno_setsid(err,));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setsid_or_die(3) function.

explain_message_setsid
void explain_message_setsid(char *message, int message_size, void);

Theexplain_message_setsidfunction is used to obtain an explanation of an error returned by thesetsid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = setsid();
if (result < 0)
{

char message[3000];
explain_message_setsid(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setsid_or_die(3) function.

explain_message_errno_setsid
void explain_message_errno_setsid(char *message, int message_size, int errnum, void);

The explain_message_errno_setsidfunction is used to obtain an explanation of an error returned by the
setsid(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = setsid();
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setsid(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setsid_or_die(3) function.

764

explain_setsid(3) explain_setsid(3)

SEE ALSO
setsid(2) creates a session and sets the process group ID

explain_setsid_or_die(3)
creates a session and sets the process group ID and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

765

explain_setsid_or_die(3) explain_setsid_or_die(3)

NAME
explain_setsid_or_die − sets process group ID and report errors

SYNOPSIS
#include <libexplain/setsid.h>

pid_t explain_setsid_or_die(void);
pid_t explain_setsid_on_error(void);

DESCRIPTION
Theexplain_setsid_or_diefunction is used to call thesetsid(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_setsid(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setsid_on_errorfunction is used to call thesetsid(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setsid(3) function, but still returns to the caller.

RETURN VALUE
Theexplain_setsid_or_diefunction only returns on success, seesetsid(2) for more information. On failure,
prints an explanation and exits, it does not return.

The explain_setsid_on_errorfunction always returns the value return by the wrappedsetsid(2) system
call.

EXAMPLE
Theexplain_setsid_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setsid_or_die();

SEE ALSO
setsid(2) creates a session and sets the process group ID

explain_setsid(3)
explainsetsid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

766

explain_setsockopt(3) explain_setsockopt(3)

NAME
explain_setsockopt − explain setsockopt(2) errors

SYNOPSIS
#include <libexplain/setsockopt.h>

const char *explain_setsockopt(int fildes, int level, int name, void *data, socklen_t data_size);
const char *explain_errno_setsockopt(int errnum, int fildes, int level, int name, void *data, socklen_t
data_size);
void explain_message_setsockopt(char *message, int message_size, int fildes, int level, int name, void
*data, socklen_t data_size);
void explain_message_errno_setsockopt(char *message, int message_size, int errnum, int fildes, int level,
int name, void *data, socklen_t data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetsockopt(2) system call.

explain_setsockopt
const char *explain_setsockopt(int fildes, int level, int name, void *data, socklen_t data_size);

Theexplain_setsockoptfunction is used to obtain an explanation of an error returned by thesetsockopt(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (setsockopt(fildes, level, name, data, data_size) < 0)
{

fprintf(stderr, "%s\n", explain_setsockopt(fildes,
level, name, data, data_size));

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_setsockopt_or_die(3) function.

fildes The original fildes, exactly as passed to thesetsockopt(2) system call.

level The original level, exactly as passed to thesetsockopt(2) system call.

name The original name, exactly as passed to thesetsockopt(2) system call.

data The original data, exactly as passed to thesetsockopt(2) system call.

data_size
The original data_size, exactly as passed to thesetsockopt(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_setsockopt
const char *explain_errno_setsockopt(int errnum, int fildes, int level, int name, void *data, socklen_t
data_size);

The explain_errno_setsockoptfunction is used to obtain an explanation of an error returned by the
setsockopt(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (setsockopt(fildes, level, name, data, data_size) < 0)

767

explain_setsockopt(3) explain_setsockopt(3)

{
int err = errno;
fprintf(stderr, "%s\n", explain_errno_setsockopt(err,

fildes, level, name, data, data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setsockopt_or_die(3) function.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thesetsockopt(2) system call.

level The original level, exactly as passed to thesetsockopt(2) system call.

name The original name, exactly as passed to thesetsockopt(2) system call.

data The original data, exactly as passed to thesetsockopt(2) system call.

data_size
The original data_size, exactly as passed to thesetsockopt(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_setsockopt
void explain_message_setsockopt(char *message, int message_size, int fildes, int level, int name, void
*data, socklen_t data_size);

The explain_message_setsockoptfunction may be used to obtain an explanation of an error returned by
thesetsockopt(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (setsockopt(fildes, level, name, data, data_size) < 0)
{

char message[3000];
explain_message_setsockopt(message, sizeof(message),

fildes, level, name, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setsockopt_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thesetsockopt(2) system call.

level The original level, exactly as passed to thesetsockopt(2) system call.

name The original name, exactly as passed to thesetsockopt(2) system call.

768

explain_setsockopt(3) explain_setsockopt(3)

data The original data, exactly as passed to thesetsockopt(2) system call.

data_size
The original data_size, exactly as passed to thesetsockopt(2) system call.

explain_message_errno_setsockopt
void explain_message_errno_setsockopt(char *message, int message_size, int errnum, int fildes, int level,
int name, void *data, socklen_t data_size);

The explain_message_errno_setsockoptfunction may be used to obtain an explanation of an error
returned by thesetsockopt(2) system call. The least the message will contain is the value of
strerror(errnum) , but usually it will do much better, and indicate the underlying cause in more
detail.

This function is intended to be used in a fashion similar to the following example:
if (setsockopt(fildes, level, name, data, data_size) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_setsockopt(message, sizeof(message),

err, fildes, level, name, data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setsockopt_or_die(3) function.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thesetsockopt(2) system call.

level The original level, exactly as passed to thesetsockopt(2) system call.

name The original name, exactly as passed to thesetsockopt(2) system call.

data The original data, exactly as passed to thesetsockopt(2) system call.

data_size
The original data_size, exactly as passed to thesetsockopt(2) system call.

SEE ALSO
setsockopt(2)

get and set options on sockets

explain_setsockopt_or_die(3)
get and set options on sockets and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

769

explain_setsockopt_or_die(3) explain_setsockopt_or_die(3)

NAME
explain_setsockopt_or_die − get and set options on sockets and report errors

SYNOPSIS
#include <libexplain/setsockopt.h>

void explain_setsockopt_or_die(int fildes, int level, int name, void *data, socklen_t data_size);

DESCRIPTION
The explain_setsockopt_or_diefunction is used to call thesetsockopt(2) system call. On failure an
explanation will be printed tostderr, obtained fromexplain_setsockopt(3), and then the process terminates
by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_setsockopt_or_die(fildes, level, name, data, data_size);

fildes The fildes, exactly as to be passed to thesetsockopt(2) system call.

level The level, exactly as to be passed to thesetsockopt(2) system call.

name The name, exactly as to be passed to thesetsockopt(2) system call.

data The data, exactly as to be passed to thesetsockopt(2) system call.

data_size
The data_size, exactly as to be passed to thesetsockopt(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
setsockopt(2)

get and set options on sockets

explain_setsockopt(3)
explainsetsockopt(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

770

explain_settimeofday(3) explain_settimeofday(3)

NAME
explain_settimeofday − explainsettimeofday(2) errors

SYNOPSIS
#include <libexplain/settimeofday.h>

const char *explain_settimeofday(const struct timeval * tv, const struct timezone *tz);
const char *explain_errno_settimeofday(int errnum, const struct timeval * tv, const struct timezone *tz);
void explain_message_settimeofday(char *message, int message_size, const struct timeval * tv, const struct
timezone *tz);
void explain_message_errno_settimeofday(char *message, int message_size, int errnum, const struct
timeval * tv, const struct timezone *tz);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesettimeofday(2) system call.

explain_settimeofday
const char *explain_settimeofday(const struct timeval * tv, const struct timezone *tz);

The explain_settimeofday function is used to obtain an explanation of an error returned by the
settimeofday(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

tv The original tv, exactly as passed to thesettimeofday(2) system call.

tz The original tz, exactly as passed to thesettimeofday(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (settimeofday(tv, tz) < 0)
{

fprintf(stderr, "%s\n", explain_settimeofday(tv, tz));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_settimeofday_or_die(3) function.

explain_errno_settimeofday
const char *explain_errno_settimeofday(int errnum, const struct timeval * tv, const struct timezone *tz);

The explain_errno_settimeofdayfunction is used to obtain an explanation of an error returned by the
settimeofday(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

tv The original tv, exactly as passed to thesettimeofday(2) system call.

tz The original tz, exactly as passed to thesettimeofday(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

771

explain_settimeofday(3) explain_settimeofday(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (settimeofday(tv, tz) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_settimeofday(err, tv,
tz));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_settimeofday_or_die(3) function.

explain_message_settimeofday
void explain_message_settimeofday(char *message, int message_size, const struct timeval * tv, const struct
timezone *tz);

The explain_message_settimeofdayfunction is used to obtain an explanation of an error returned by the
settimeofday(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

tv The original tv, exactly as passed to thesettimeofday(2) system call.

tz The original tz, exactly as passed to thesettimeofday(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (settimeofday(tv, tz) < 0)
{

char message[3000];
explain_message_settimeofday(message, sizeof(message), tv,
tz);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_settimeofday_or_die(3) function.

explain_message_errno_settimeofday
void explain_message_errno_settimeofday(char *message, int message_size, int errnum, const struct
timeval * tv, const struct timezone *tz);

The explain_message_errno_settimeofdayfunction is used to obtain an explanation of an error returned
by the settimeofday(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

tv The original tv, exactly as passed to thesettimeofday(2) system call.

772

explain_settimeofday(3) explain_settimeofday(3)

tz The original tz, exactly as passed to thesettimeofday(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (settimeofday(tv, tz) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_settimeofday(message, sizeof(message),
err, tv, tz);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_settimeofday_or_die(3) function.

SEE ALSO
settimeofday(2)

sets system time

explain_settimeofday_or_die(3)
sets system time and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

773

explain_settimeofday_or_die(3) explain_settimeofday_or_die(3)

NAME
explain_settimeofday_or_die − sets system time and report errors

SYNOPSIS
#include <libexplain/settimeofday.h>

void explain_settimeofday_or_die(const struct timeval * tv, const struct timezone *tz);
int explain_settimeofday_on_error(const struct timeval * tv, const struct timezone *tz);

DESCRIPTION
The explain_settimeofday_or_diefunction is used to call thesettimeofday(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_settimeofday(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

Theexplain_settimeofday_on_errorfunction is used to call thesettimeofday(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_settimeofday(3) function, but still returns to
the caller.

tv The tv, exactly as to be passed to thesettimeofday(2) system call.

tz The tz, exactly as to be passed to thesettimeofday(2) system call.

RETURN VALUE
The explain_settimeofday_or_die function only returns on success, seesettimeofday(2) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_settimeofday_on_error function always returns the value return by the wrapped
settimeofday(2) system call.

EXAMPLE
The explain_settimeofday_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_settimeofday_or_die(tv, tz);

SEE ALSO
settimeofday(2)

sets system time

explain_settimeofday(3)
explainsettimeofday(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

774

explain_setuid(3) explain_setuid(3)

NAME
explain_setuid − explainsetuid(2) errors

SYNOPSIS
#include <libexplain/setuid.h>

const char *explain_setuid(int uid);
const char *explain_errno_setuid(int errnum, int uid);
void explain_message_setuid(char *message, int message_size, int uid);
void explain_message_errno_setuid(char *message, int message_size, int errnum, int uid);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetuid(2) system call.

explain_setuid
const char *explain_setuid(int uid);

The explain_setuid function is used to obtain an explanation of an error returned by thesetuid(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

uid The original uid, exactly as passed to thesetuid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setuid(uid) < 0)
{

fprintf(stderr, "%s\n", explain_setuid(uid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setuid_or_die(3) function.

explain_errno_setuid
const char *explain_errno_setuid(int errnum, int uid);

The explain_errno_setuid function is used to obtain an explanation of an error returned by thesetuid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

uid The original uid, exactly as passed to thesetuid(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setuid(uid) < 0)
{

775

explain_setuid(3) explain_setuid(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setuid(err, uid));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setuid_or_die(3) function.

explain_message_setuid
void explain_message_setuid(char *message, int message_size, int uid);

Theexplain_message_setuidfunction is used to obtain an explanation of an error returned by thesetuid(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

uid The original uid, exactly as passed to thesetuid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setuid(uid) < 0)
{

char message[3000];
explain_message_setuid(message, sizeof(message), uid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_setuid_or_die(3) function.

explain_message_errno_setuid
void explain_message_errno_setuid(char *message, int message_size, int errnum, int uid);

The explain_message_errno_setuidfunction is used to obtain an explanation of an error returned by the
setuid(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

uid The original uid, exactly as passed to thesetuid(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setuid(uid) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setuid(message, sizeof(message), err,
uid);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

776

explain_setuid(3) explain_setuid(3)

The above code example is available pre−packaged as theexplain_setuid_or_die(3) function.

SEE ALSO
setuid(2)

set user identity

explain_setuid_or_die(3)
set user identity and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

777

explain_setuid_or_die(3) explain_setuid_or_die(3)

NAME
explain_setuid_or_die − set user identity and report errors

SYNOPSIS
#include <libexplain/setuid.h>

void explain_setuid_or_die(int uid);
int explain_setuid_on_error(int uid);

DESCRIPTION
Theexplain_setuid_or_diefunction is used to call thesetuid(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_setuid(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setuid_on_error function is used to call thesetuid(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setuid(3) function, but still returns to the caller.

uid The uid, exactly as to be passed to thesetuid(2) system call.

RETURN VALUE
The explain_setuid_or_die function only returns on success, seesetuid(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_setuid_on_error function always returns the value return by the wrappedsetuid(2) system
call.

EXAMPLE
Theexplain_setuid_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setuid_or_die(uid);

SEE ALSO
setuid(2)

set user identity

explain_setuid(3)
explainsetuid(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

778

explain_setvbuf(3) explain_setvbuf(3)

NAME
explain_setvbuf − explainsetvbuf(3) errors

SYNOPSIS
#include <libexplain/setvbuf.h>

const char *explain_setvbuf(FILE *fp, char *data, int mode, size_t size);
const char *explain_errno_setvbuf(int errnum, FILE *fp, char *data, int mode, size_t size);
void explain_message_setvbuf(char *message, int message_size, FILE *fp, char *data, int mode, size_t
size);
void explain_message_errno_setvbuf(char *message, int message_size, int errnum, FILE *fp, char *data,
int mode, size_t size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesetvbuf(3) system call.

explain_setvbuf
const char *explain_setvbuf(FILE *fp, char *data, int mode, size_t size);

Theexplain_setvbuffunction is used to obtain an explanation of an error returned by thesetvbuf(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thesetvbuf(3) system call.

data The original data, exactly as passed to thesetvbuf(3) system call.

mode The original mode, exactly as passed to thesetvbuf(3) system call.

size The original size, exactly as passed to thesetvbuf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setvbuf(fp, data, mode, size) < 0)
{

fprintf(stderr, "%s\n", explain_setvbuf(fp, data, mode,
size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setvbuf_or_die(3) function.

explain_errno_setvbuf
const char *explain_errno_setvbuf(int errnum, FILE *fp, char *data, int mode, size_t size);

Theexplain_errno_setvbuffunction is used to obtain an explanation of an error returned by thesetvbuf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thesetvbuf(3) system call.

data The original data, exactly as passed to thesetvbuf(3) system call.

779

explain_setvbuf(3) explain_setvbuf(3)

mode The original mode, exactly as passed to thesetvbuf(3) system call.

size The original size, exactly as passed to thesetvbuf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (setvbuf(fp, data, mode, size) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_setvbuf(err, fp, data,
mode, size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setvbuf_or_die(3) function.

explain_message_setvbuf
void explain_message_setvbuf(char *message, int message_size, FILE *fp, char *data, int mode, size_t
size);

The explain_message_setvbuffunction is used to obtain an explanation of an error returned by the
setvbuf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thesetvbuf(3) system call.

data The original data, exactly as passed to thesetvbuf(3) system call.

mode The original mode, exactly as passed to thesetvbuf(3) system call.

size The original size, exactly as passed to thesetvbuf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setvbuf(fp, data, mode, size) < 0)
{

char message[3000];
explain_message_setvbuf(message, sizeof(message), fp, data,
mode, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setvbuf_or_die(3) function.

explain_message_errno_setvbuf
void explain_message_errno_setvbuf(char *message, int message_size, int errnum, FILE *fp, char *data,
int mode, size_t size);

Theexplain_message_errno_setvbuffunction is used to obtain an explanation of an error returned by the
setvbuf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

780

explain_setvbuf(3) explain_setvbuf(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thesetvbuf(3) system call.

data The original data, exactly as passed to thesetvbuf(3) system call.

mode The original mode, exactly as passed to thesetvbuf(3) system call.

size The original size, exactly as passed to thesetvbuf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (setvbuf(fp, data, mode, size) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_setvbuf(message, sizeof(message), err,
fp, data, mode, size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_setvbuf_or_die(3) function.

SEE ALSO
setvbuf(3)

stream buffering operations

explain_setvbuf_or_die(3)
stream buffering operations and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

781

explain_setvbuf_or_die(3) explain_setvbuf_or_die(3)

NAME
explain_setvbuf_or_die − stream buffering operations and report errors

SYNOPSIS
#include <libexplain/setvbuf.h>

void explain_setvbuf_or_die(FILE *fp, char *data, int mode, size_t size);
int explain_setvbuf_on_error(FILE *fp, char *data, int mode, size_t size);

DESCRIPTION
The explain_setvbuf_or_diefunction is used to call thesetvbuf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_setvbuf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_setvbuf_on_error function is used to call thesetvbuf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_setvbuf(3) function, but still returns to the
caller.

fp The fp, exactly as to be passed to thesetvbuf(3) system call.

data The data, exactly as to be passed to thesetvbuf(3) system call.

mode The mode, exactly as to be passed to thesetvbuf(3) system call.

size The size, exactly as to be passed to thesetvbuf(3) system call.

RETURN VALUE
The explain_setvbuf_or_diefunction only returns on success, seesetvbuf(3) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_setvbuf_on_errorfunction always returns the value return by the wrappedsetvbuf(3) system
call.

EXAMPLE
Theexplain_setvbuf_or_diefunction is intended to be used in a fashion similar to the following example:

explain_setvbuf_or_die(fp, data, mode, size);

SEE ALSO
setvbuf(3)

stream buffering operations

explain_setvbuf(3)
explainsetvbuf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

782

explain_shmat(3) explain_shmat(3)

NAME
explain_shmat − explainshmat(2) errors

SYNOPSIS
#include <libexplain/shmat.h>

const char *explain_shmat(int shmid, const void *shmaddr, int shmflg);
const char *explain_errno_shmat(int errnum, int shmid, const void *shmaddr, int shmflg);
void explain_message_shmat(char *message, int message_size, int shmid, const void *shmaddr, int
shmflg);
void explain_message_errno_shmat(char *message, int message_size, int errnum, int shmid, const void
*shmaddr, int shmflg);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theshmat(2) system call.

explain_shmat
const char *explain_shmat(int shmid, const void *shmaddr, int shmflg);

The explain_shmat function is used to obtain an explanation of an error returned by theshmat(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

shmid The original shmid, exactly as passed to theshmat(2) system call.

shmaddrThe original shmaddr, exactly as passed to theshmat(2) system call.

shmflg The original shmflg, exactly as passed to theshmat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
void *result = shmat(shmid, shmaddr, shmflg);
if (!result)
{

fprintf(stderr, "%s\n", explain_shmat(shmid, shmaddr,
shmflg));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_shmat_or_die(3) function.

explain_errno_shmat
const char *explain_errno_shmat(int errnum, int shmid, const void *shmaddr, int shmflg);

The explain_errno_shmat function is used to obtain an explanation of an error returned by theshmat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

shmid The original shmid, exactly as passed to theshmat(2) system call.

shmaddrThe original shmaddr, exactly as passed to theshmat(2) system call.

783

explain_shmat(3) explain_shmat(3)

shmflg The original shmflg, exactly as passed to theshmat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
void *result = shmat(shmid, shmaddr, shmflg);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_shmat(err, shmid,
shmaddr, shmflg));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_shmat_or_die(3) function.

explain_message_shmat
void explain_message_shmat(char *message, int message_size, int shmid, const void *shmaddr, int
shmflg);

Theexplain_message_shmatfunction is used to obtain an explanation of an error returned by theshmat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

shmid The original shmid, exactly as passed to theshmat(2) system call.

shmaddrThe original shmaddr, exactly as passed to theshmat(2) system call.

shmflg The original shmflg, exactly as passed to theshmat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
void *result = shmat(shmid, shmaddr, shmflg);
if (!result)
{

char message[3000];
explain_message_shmat(message, sizeof(message), shmid,
shmaddr, shmflg);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_shmat_or_die(3) function.

explain_message_errno_shmat
void explain_message_errno_shmat(char *message, int message_size, int errnum, int shmid, const void
*shmaddr, int shmflg);

The explain_message_errno_shmatfunction is used to obtain an explanation of an error returned by the
shmat(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

784

explain_shmat(3) explain_shmat(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

shmid The original shmid, exactly as passed to theshmat(2) system call.

shmaddrThe original shmaddr, exactly as passed to theshmat(2) system call.

shmflg The original shmflg, exactly as passed to theshmat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
void *result = shmat(shmid, shmaddr, shmflg);
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_shmat(message, sizeof(message), err,
shmid, shmaddr, shmflg);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_shmat_or_die(3) function.

SEE ALSO
shmat(2)

shared memory attach

explain_shmat_or_die(3)
shared memory attach and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

785

explain_shmat_or_die(3) explain_shmat_or_die(3)

NAME
explain_shmat_or_die − shared memory attach and report errors

SYNOPSIS
#include <libexplain/shmat.h>

void *explain_shmat_or_die(int shmid, const void *shmaddr, int shmflg);
void *explain_shmat_on_error(int shmid, const void *shmaddr, int shmflg);

DESCRIPTION
Theexplain_shmat_or_diefunction is used to call theshmat(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_shmat(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_shmat_on_error function is used to call theshmat(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_shmat(3) function, but still returns to the caller.

shmid The shmid, exactly as to be passed to theshmat(2) system call.

shmaddrThe shmaddr, exactly as to be passed to theshmat(2) system call.

shmflg The shmflg, exactly as to be passed to theshmat(2) system call.

RETURN VALUE
The explain_shmat_or_die function only returns on success, seeshmat(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_shmat_on_error function always returns the value return by the wrappedshmat(2) system
call.

EXAMPLE
Theexplain_shmat_or_diefunction is intended to be used in a fashion similar to the following example:

void *result = explain_shmat_or_die(shmid, shmaddr, shmflg);

SEE ALSO
shmat(2)

shared memory attach

explain_shmat(3)
explainshmat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

786

explain_shmctl(3) explain_shmctl(3)

NAME
explain_shmctl − explainshmctl(2) errors

SYNOPSIS
#include <libexplain/shmctl.h>

const char *explain_shmctl(int shmid, int command, struct shmid_ds *data);
const char *explain_errno_shmctl(int errnum, int shmid, int command, struct shmid_ds *data);
void explain_message_shmctl(char *message, int message_size, int shmid, int command, struct shmid_ds
*data);
void explain_message_errno_shmctl(char *message, int message_size, int errnum, int shmid, int command,
struct shmid_ds *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theshmctl(2) system call.

explain_shmctl
const char *explain_shmctl(int shmid, int command, struct shmid_ds *data);

Theexplain_shmctl function is used to obtain an explanation of an error returned by theshmctl(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

shmid The original shmid, exactly as passed to theshmctl(2) system call.

command
The original command, exactly as passed to theshmctl(2) system call.

data The original data, exactly as passed to theshmctl(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (shmctl(shmid, command, data) < 0)
{

fprintf(stderr, "%s\n", explain_shmctl(shmid, command, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_shmctl_or_die(3) function.

explain_errno_shmctl
const char *explain_errno_shmctl(int errnum, int shmid, int command, struct shmid_ds *data);

Theexplain_errno_shmctl function is used to obtain an explanation of an error returned by theshmctl(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

shmid The original shmid, exactly as passed to theshmctl(2) system call.

command
The original command, exactly as passed to theshmctl(2) system call.

787

explain_shmctl(3) explain_shmctl(3)

data The original data, exactly as passed to theshmctl(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (shmctl(shmid, command, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_shmctl(err, shmid,
command, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_shmctl_or_die(3) function.

explain_message_shmctl
void explain_message_shmctl(char *message, int message_size, int shmid, int command, struct shmid_ds
*data);

The explain_message_shmctlfunction is used to obtain an explanation of an error returned by the
shmctl(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

shmid The original shmid, exactly as passed to theshmctl(2) system call.

command
The original command, exactly as passed to theshmctl(2) system call.

data The original data, exactly as passed to theshmctl(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (shmctl(shmid, command, data) < 0)
{

char message[3000];
explain_message_shmctl(message, sizeof(message), shmid,
command, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_shmctl_or_die(3) function.

explain_message_errno_shmctl
void explain_message_errno_shmctl(char *message, int message_size, int errnum, int shmid, int command,
struct shmid_ds *data);

The explain_message_errno_shmctlfunction is used to obtain an explanation of an error returned by the
shmctl(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

788

explain_shmctl(3) explain_shmctl(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

shmid The original shmid, exactly as passed to theshmctl(2) system call.

command
The original command, exactly as passed to theshmctl(2) system call.

data The original data, exactly as passed to theshmctl(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (shmctl(shmid, command, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_shmctl(message, sizeof(message), err,
shmid, command, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_shmctl_or_die(3) function.

SEE ALSO
shmctl(2)

shared memory control

explain_shmctl_or_die(3)
shared memory control and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

789

explain_shmctl_or_die(3) explain_shmctl_or_die(3)

NAME
explain_shmctl_or_die − shared memory control and report errors

SYNOPSIS
#include <libexplain/shmctl.h>

void explain_shmctl_or_die(int shmid, int command, struct shmid_ds *data);
int explain_shmctl_on_error(int shmid, int command, struct shmid_ds *data);

DESCRIPTION
The explain_shmctl_or_diefunction is used to call theshmctl(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_shmctl(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_shmctl_on_error function is used to call theshmctl(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_shmctl(3) function, but still returns to the caller.

shmid The shmid, exactly as to be passed to theshmctl(2) system call.

command
The command, exactly as to be passed to theshmctl(2) system call.

data The data, exactly as to be passed to theshmctl(2) system call.

RETURN VALUE
The explain_shmctl_or_die function only returns on success, seeshmctl(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_shmctl_on_error function always returns the value return by the wrappedshmctl(2) system
call.

EXAMPLE
Theexplain_shmctl_or_diefunction is intended to be used in a fashion similar to the following example:

explain_shmctl_or_die(shmid, command, data);

SEE ALSO
shmctl(2)

shared memory control

explain_shmctl(3)
explainshmctl(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2011 Peter Miller

790

explain_signalfd(3) explain_signalfd(3)

NAME
explain_signalfd − explain signalfd(2) errors

SYNOPSIS
#include <libexplain/signalfd.h>

const char *explain_signalfd(int fildes, const sigset_t *mask, int flags);
const char *explain_errno_signalfd(int errnum, int fildes, const sigset_t *mask, int flags);
void explain_message_signalfd(char *message, int message_size, int fildes, const sigset_t *mask, int flags);
void explain_message_errno_signalfd(char *message, int message_size, int errnum, int fildes, const
sigset_t *mask, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesignalfd(2) system call.

explain_signalfd
const char *explain_signalfd(int fildes, const sigset_t *mask, int flags);

The explain_signalfd function is used to obtain an explanation of an error returned by thesignalfd(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thesignalfd(2) system call.

mask The original mask, exactly as passed to thesignalfd(2) system call.

flags The original flags, exactly as passed to thesignalfd(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = signalfd(fildes, mask, flags);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_signalfd(fildes, mask,
flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_signalfd_or_die(3) function.

explain_errno_signalfd
const char *explain_errno_signalfd(int errnum, int fildes, const sigset_t *mask, int flags);

The explain_errno_signalfd function is used to obtain an explanation of an error returned by the
signalfd(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thesignalfd(2) system call.

mask The original mask, exactly as passed to thesignalfd(2) system call.

flags The original flags, exactly as passed to thesignalfd(2) system call.

791

explain_signalfd(3) explain_signalfd(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = signalfd(fildes, mask, flags);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_signalfd(err, fildes,
mask, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_signalfd_or_die(3) function.

explain_message_signalfd
void explain_message_signalfd(char *message, int message_size, int fildes, const sigset_t *mask, int flags);

The explain_message_signalfdfunction is used to obtain an explanation of an error returned by the
signalfd(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thesignalfd(2) system call.

mask The original mask, exactly as passed to thesignalfd(2) system call.

flags The original flags, exactly as passed to thesignalfd(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = signalfd(fildes, mask, flags);
if (result < 0)
{

char message[3000];
explain_message_signalfd(message, sizeof(message), fildes,
mask, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_signalfd_or_die(3) function.

explain_message_errno_signalfd
void explain_message_errno_signalfd(char *message, int message_size, int errnum, int fildes, const
sigset_t *mask, int flags);

Theexplain_message_errno_signalfdfunction is used to obtain an explanation of an error returned by the
signalfd(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

792

explain_signalfd(3) explain_signalfd(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thesignalfd(2) system call.

mask The original mask, exactly as passed to thesignalfd(2) system call.

flags The original flags, exactly as passed to thesignalfd(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = signalfd(fildes, mask, flags);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_signalfd(message, sizeof(message), err,
fildes, mask, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_signalfd_or_die(3) function.

SEE ALSO
signalfd(2)

create a file descriptor for accepting signals

explain_signalfd_or_die(3)
create a file descriptor for accepting signals and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

793

explain_signalfd_or_die(3) explain_signalfd_or_die(3)

NAME
explain_signalfd_or_die − create signalable file descriptor and report errors

SYNOPSIS
#include <libexplain/signalfd.h>

int explain_signalfd_or_die(int fildes, const sigset_t *mask, int flags);
int explain_signalfd_on_error(int fildes, const sigset_t *mask, int flags);

DESCRIPTION
Theexplain_signalfd_or_diefunction is used to call thesignalfd(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_signalfd(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_signalfd_on_error function is used to call thesignalfd(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_signalfd(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thesignalfd(2) system call.

mask The mask, exactly as to be passed to thesignalfd(2) system call.

flags The flags, exactly as to be passed to thesignalfd(2) system call.

RETURN VALUE
The explain_signalfd_or_diefunction only returns on success, seesignalfd(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_signalfd_on_error function always returns the value return by the wrappedsignalfd(2)
system call.

EXAMPLE
Theexplain_signalfd_or_diefunction is intended to be used in a fashion similar to the following example:

int result = explain_signalfd_or_die(fildes, mask, flags);

SEE ALSO
signalfd(2)

create a file descriptor for accepting signals

explain_signalfd(3)
explainsignalfd(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

794

explain_sleep(3) explain_sleep(3)

NAME
explain_sleep − explainsleep(3) errors

SYNOPSIS
#include <libexplain/sleep.h>

const char *explain_sleep(unsigned int seconds);
const char *explain_errno_sleep(int errnum, unsigned int seconds);
void explain_message_sleep(char *message, int message_size, unsigned int seconds);
void explain_message_errno_sleep(char *message, int message_size, int errnum, unsigned int seconds);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesleep(3) system call.

explain_sleep
const char *explain_sleep(unsigned int seconds);

The explain_sleepfunction is used to obtain an explanation of an error returned by thesleep(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

seconds The original seconds, exactly as passed to thesleep(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned int result = sleep(seconds);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_sleep(seconds));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_sleep_or_die(3) function.

explain_errno_sleep
const char *explain_errno_sleep(int errnum, unsigned int seconds);

The explain_errno_sleepfunction is used to obtain an explanation of an error returned by thesleep(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

seconds The original seconds, exactly as passed to thesleep(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned int result = sleep(seconds);

795

explain_sleep(3) explain_sleep(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_sleep(err, seconds));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_sleep_or_die(3) function.

explain_message_sleep
void explain_message_sleep(char *message, int message_size, unsigned int seconds);

The explain_message_sleepfunction is used to obtain an explanation of an error returned by thesleep(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

seconds The original seconds, exactly as passed to thesleep(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned int result = sleep(seconds);
if (result < 0)
{

char message[3000];
explain_message_sleep(message, sizeof(message), seconds);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_sleep_or_die(3) function.

explain_message_errno_sleep
void explain_message_errno_sleep(char *message, int message_size, int errnum, unsigned int seconds);

The explain_message_errno_sleepfunction is used to obtain an explanation of an error returned by the
sleep(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

seconds The original seconds, exactly as passed to thesleep(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned int result = sleep(seconds);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_sleep(message, sizeof(message), err,

796

explain_sleep(3) explain_sleep(3)

seconds);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_sleep_or_die(3) function.

SEE ALSO
sleep(3) Sleep for the specified number of seconds

explain_sleep_or_die(3)
Sleep for the specified number of seconds and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

797

explain_sleep_or_die(3) explain_sleep_or_die(3)

NAME
explain_sleep_or_die − Sleep for a number of seconds and report errors

SYNOPSIS
#include <libexplain/sleep.h>

unsigned int explain_sleep_or_die(unsigned int seconds);
unsigned int explain_sleep_on_error(unsigned int seconds);

DESCRIPTION
The explain_sleep_or_diefunction is used to call thesleep(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_sleep(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_sleep_on_errorfunction is used to call thesleep(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_sleep(3) function, but still returns to the caller.

seconds The seconds, exactly as to be passed to thesleep(3) system call.

RETURN VALUE
Theexplain_sleep_or_diefunction only returns on success, seesleep(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_sleep_on_errorfunction always returns the value return by the wrappedsleep(3) system call.

EXAMPLE
Theexplain_sleep_or_diefunction is intended to be used in a fashion similar to the following example:

unsigned int result = explain_sleep_or_die(seconds);

SEE ALSO
sleep(3) Sleep for the specified number of seconds

explain_sleep(3)
explainsleep(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

798

explain_snprintf(3) explain_snprintf(3)

NAME
explain_snprintf − explainsnprintf(3) errors

SYNOPSIS
#include <libexplain/snprintf.h>

const char *explain_snprintf(char *data, size_t data_size, const char *format);
const char *explain_errno_snprintf(int errnum, char *data, size_t data_size, const char *format);
void explain_message_snprintf(char *message, int message_size, char *data, size_t data_size, const char
*format);
void explain_message_errno_snprintf(char *message, int message_size, int errnum, char *data, size_t
data_size, const char *format);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesnprintf(3) system call.

explain_snprintf
const char *explain_snprintf(char *data, size_t data_size, const char *format);

The explain_snprintf function is used to obtain an explanation of an error returned by thesnprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thesnprintf(3) system call.

data_size
The original data_size, exactly as passed to thesnprintf(3) system call.

format The original format, exactly as passed to thesnprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = snprintf(data, data_size, format);
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_snprintf(data, data_size,
format));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_snprintf_or_die(3) function.

explain_errno_snprintf
const char *explain_errno_snprintf(int errnum, char *data, size_t data_size, const char *format);

The explain_errno_snprintf function is used to obtain an explanation of an error returned by the
snprintf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thesnprintf(3) system call.

799

explain_snprintf(3) explain_snprintf(3)

data_size
The original data_size, exactly as passed to thesnprintf(3) system call.

format The original format, exactly as passed to thesnprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = snprintf(data, data_size, format);
if (result < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_snprintf(err, data,
data_size, format));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_snprintf_or_die(3) function.

explain_message_snprintf
void explain_message_snprintf(char *message, int message_size, char *data, size_t data_size, const char
*format);

The explain_message_snprintffunction is used to obtain an explanation of an error returned by the
snprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thesnprintf(3) system call.

data_size
The original data_size, exactly as passed to thesnprintf(3) system call.

format The original format, exactly as passed to thesnprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = snprintf(data, data_size, format);
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_snprintf(message, sizeof(message), data,
data_size, format);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_snprintf_or_die(3) function.

800

explain_snprintf(3) explain_snprintf(3)

explain_message_errno_snprintf
void explain_message_errno_snprintf(char *message, int message_size, int errnum, char *data, size_t
data_size, const char *format);

Theexplain_message_errno_snprintffunction is used to obtain an explanation of an error returned by the
snprintf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thesnprintf(3) system call.

data_size
The original data_size, exactly as passed to thesnprintf(3) system call.

format The original format, exactly as passed to thesnprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = snprintf(data, data_size, format);
if (result < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_snprintf(message, sizeof(message), err,
data, data_size, format);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_snprintf_or_die(3) function.

SEE ALSO
snprintf(3)

formatted output conversion

explain_snprintf_or_die(3)
formatted output conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

801

explain_snprintf_or_die(3) explain_snprintf_or_die(3)

NAME
explain_snprintf_or_die − formatted output conversion and report errors

SYNOPSIS
#include <libexplain/snprintf.h>

int explain_snprintf_or_die(char *data, size_t data_size, const char *format);
int explain_snprintf_on_error(char *data, size_t data_size, const char *format);

DESCRIPTION
Theexplain_snprintf_or_die function is used to call thesnprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_snprintf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_snprintf_on_error function is used to call thesnprintf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_snprintf(3) function, but still returns to the
caller.

data The data, exactly as to be passed to thesnprintf(3) system call.

data_size
The data_size, exactly as to be passed to thesnprintf(3) system call.

format The format, exactly as to be passed to thesnprintf(3) system call.

RETURN VALUE
The explain_snprintf_or_die function only returns on success, seesnprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_snprintf_on_error function always returns the value return by the wrappedsnprintf(3)
system call.

EXAMPLE
Theexplain_snprintf_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_snprintf_or_die(data, data_size, format);

SEE ALSO
snprintf(3)

formatted output conversion

explain_snprintf(3)
explainsnprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

802

explain_socket(3) explain_socket(3)

NAME
explain_socket − explain socket(2) errors

SYNOPSIS
#include <libexplain/socket.h>

const char *explain_socket(int domain, int type, int protocol);
const char *explain_errno_socket(int errnum, int domain, int type, int protocol);
void explain_message_socket(char *message, int message_size, int domain, int type, int protocol);
void explain_message_errno_socket(char *message, int message_size, int errnum, int domain, int type, int
protocol);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesocket(2) system call.

explain_socket
const char *explain_socket(int domain, int type, int protocol);

The explain_socketfunction is used to obtain an explanation of an error returned by thesocket(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (socket(domain, type, protocol) < 0)
{

fprintf(stderr, "%s\n", explain_socket(domain, type, protocol));
exit(EXIT_FAILURE);

}

domain The original domain, exactly as passed to thesocket(2) system call.

type The original type, exactly as passed to thesocket(2) system call.

protocol The original protocol, exactly as passed to thesocket(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_socket
const char *explain_errno_socket(int errnum, int domain, int type, int protocol);

The explain_errno_socketfunction is used to obtain an explanation of an error returned by thesocket(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (socket(domain, type, protocol) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_socket(err,

domain, type, protocol));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

803

explain_socket(3) explain_socket(3)

domain The original domain, exactly as passed to thesocket(2) system call.

type The original type, exactly as passed to thesocket(2) system call.

protocol The original protocol, exactly as passed to thesocket(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_socket
void explain_message_socket(char *message, int message_size, int domain, int type, int protocol);

The explain_message_socketfunction may be used to obtain an explanation of an error returned by the
socket(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (socket(domain, type, protocol) < 0)
{

char message[3000];
explain_message_socket(message, sizeof(message), domain, type, protocol);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

domain The original domain, exactly as passed to thesocket(2) system call.

type The original type, exactly as passed to thesocket(2) system call.

protocol The original protocol, exactly as passed to thesocket(2) system call.

explain_message_errno_socket
void explain_message_errno_socket(char *message, int message_size, int errnum, int domain, int type, int
protocol);

Theexplain_message_errno_socketfunction may be used to obtain an explanation of an error returned by
the socket(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (socket(domain, type, protocol) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_socket(message, sizeof(message), err,

domain, type, protocol);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

804

explain_socket(3) explain_socket(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

domain The original domain, exactly as passed to thesocket(2) system call.

type The original type, exactly as passed to thesocket(2) system call.

protocol The original protocol, exactly as passed to thesocket(2) system call.

SEE ALSO
socket(2)

create an endpoint for communication

explain_socket_or_die(3)
create an endpoint for communication and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

805

explain_socket_or_die(3) explain_socket_or_die(3)

NAME
explain_socket_or_die − create an endpoint and report errors

SYNOPSIS
#include <libexplain/socket.h>

void explain_socket_or_die(int domain, int type, int protocol);

DESCRIPTION
The explain_socket_or_diefunction is used to call thesocket(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_socket(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_socket_or_die(domain, type, protocol);

domain The domain, exactly as to be passed to thesocket(2) system call.

type The type, exactly as to be passed to thesocket(2) system call.

protocol The protocol, exactly as to be passed to thesocket(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
socket(2)

create an endpoint for communication

explain_socket(3)
explainsocket(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

806

explain_socketpair(3) explain_socketpair(3)

NAME
explain_socketpair − explainsocketpair(2) errors

SYNOPSIS
#include <libexplain/socketpair.h>

const char *explain_socketpair(int domain, int type, int protocol, int *sv);
const char *explain_errno_socketpair(int errnum, int domain, int type, int protocol, int *sv);
void explain_message_socketpair(char *message, int message_size, int domain, int type, int protocol, int
*sv);
void explain_message_errno_socketpair(char *message, int message_size, int errnum, int domain, int type,
int protocol, int *sv);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesocketpair(2) system call.

explain_socketpair
const char *explain_socketpair(int domain, int type, int protocol, int *sv);

Theexplain_socketpairfunction is used to obtain an explanation of an error returned by thesocketpair(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

domain The original domain, exactly as passed to thesocketpair(2) system call.

type The original type, exactly as passed to thesocketpair(2) system call.

protocol The original protocol, exactly as passed to thesocketpair(2) system call.

sv The original sv, exactly as passed to thesocketpair(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (socketpair(domain, type, protocol, sv) < 0)
{

fprintf(stderr, "%s\n", explain_socketpair(domain, type,
protocol, sv));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_socketpair_or_die(3) function.

explain_errno_socketpair
const char *explain_errno_socketpair(int errnum, int domain, int type, int protocol, int *sv);

The explain_errno_socketpair function is used to obtain an explanation of an error returned by the
socketpair(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

domain The original domain, exactly as passed to thesocketpair(2) system call.

type The original type, exactly as passed to thesocketpair(2) system call.

807

explain_socketpair(3) explain_socketpair(3)

protocol The original protocol, exactly as passed to thesocketpair(2) system call.

sv The original sv, exactly as passed to thesocketpair(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (socketpair(domain, type, protocol, sv) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_socketpair(err, domain,
type, protocol, sv));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_socketpair_or_die(3) function.

explain_message_socketpair
void explain_message_socketpair(char *message, int message_size, int domain, int type, int protocol, int
*sv);

The explain_message_socketpairfunction is used to obtain an explanation of an error returned by the
socketpair(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

domain The original domain, exactly as passed to thesocketpair(2) system call.

type The original type, exactly as passed to thesocketpair(2) system call.

protocol The original protocol, exactly as passed to thesocketpair(2) system call.

sv The original sv, exactly as passed to thesocketpair(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (socketpair(domain, type, protocol, sv) < 0)
{

char message[3000];
explain_message_socketpair(message, sizeof(message), domain,
type, protocol, sv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_socketpair_or_die(3) function.

explain_message_errno_socketpair
void explain_message_errno_socketpair(char *message, int message_size, int errnum, int domain, int type,
int protocol, int *sv);

Theexplain_message_errno_socketpairfunction is used to obtain an explanation of an error returned by
thesocketpair(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

808

explain_socketpair(3) explain_socketpair(3)

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

domain The original domain, exactly as passed to thesocketpair(2) system call.

type The original type, exactly as passed to thesocketpair(2) system call.

protocol The original protocol, exactly as passed to thesocketpair(2) system call.

sv The original sv, exactly as passed to thesocketpair(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (socketpair(domain, type, protocol, sv) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_socketpair(message, sizeof(message),
err, domain, type, protocol, sv);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_socketpair_or_die(3) function.

SEE ALSO
socketpair(2)

create a pair of connected sockets

explain_socketpair_or_die(3)
create a pair of connected sockets and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

809

explain_socketpair_or_die(3) explain_socketpair_or_die(3)

NAME
explain_socketpair_or_die − create pair of connected sockets and report errors

SYNOPSIS
#include <libexplain/socketpair.h>

void explain_socketpair_or_die(int domain, int type, int protocol, int *sv);
int explain_socketpair_on_error(int domain, int type, int protocol, int *sv);

DESCRIPTION
The explain_socketpair_or_die function is used to call thesocketpair(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_socketpair(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_socketpair_on_error function is used to call thesocketpair(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_socketpair(3) function, but still returns to
the caller.

domain The domain, exactly as to be passed to thesocketpair(2) system call.

type The type, exactly as to be passed to thesocketpair(2) system call.

protocol The protocol, exactly as to be passed to thesocketpair(2) system call.

sv The sv, exactly as to be passed to thesocketpair(2) system call.

RETURN VALUE
The explain_socketpair_or_diefunction only returns on success, seesocketpair(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_socketpair_on_error function always returns the value return by the wrappedsocketpair(2)
system call.

EXAMPLE
The explain_socketpair_or_die function is intended to be used in a fashion similar to the following
example:

explain_socketpair_or_die(domain, type, protocol, sv);

SEE ALSO
socketpair(2)

create a pair of connected sockets

explain_socketpair(3)
explainsocketpair(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

810

explain_sprintf(3) explain_sprintf(3)

NAME
explain_sprintf − explainsprintf(3) errors

SYNOPSIS
#include <libexplain/sprintf.h>

const char *explain_sprintf(char *data, const char *format, ...);
const char *explain_errno_sprintf(int errnum, char *data, const char *format, ...);
void explain_message_sprintf(char *message, int message_size, char *data, const char *format, ...);
void explain_message_errno_sprintf(char *message, int message_size, int errnum, char *data, const char
*format, ...);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesprintf(3) system call.

explain_sprintf
const char *explain_sprintf(char *data, const char *format, ...);

Theexplain_sprintf function is used to obtain an explanation of an error returned by thesprintf(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thesprintf(3) system call.

format The original format, exactly as passed to thesprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = sprintf(data, format, ...);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_sprintf(data, format, ...));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_sprintf_or_die(3) function.

explain_errno_sprintf
const char *explain_errno_sprintf(int errnum, char *data, const char *format, ...);

Theexplain_errno_sprintf function is used to obtain an explanation of an error returned by thesprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thesprintf(3) system call.

format The original format, exactly as passed to thesprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

811

explain_sprintf(3) explain_sprintf(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = sprintf(data, format, ...);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_sprintf(err, data,
format, ...));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_sprintf_or_die(3) function.

explain_message_sprintf
void explain_message_sprintf(char *message, int message_size, char *data, const char *format, ...);

The explain_message_sprintffunction is used to obtain an explanation of an error returned by the
sprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thesprintf(3) system call.

format The original format, exactly as passed to thesprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = sprintf(data, format, ...);
if (result < 0)
{

char message[3000];
explain_message_sprintf(message, sizeof(message), data,
format, ...);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_sprintf_or_die(3) function.

explain_message_errno_sprintf
void explain_message_errno_sprintf(char *message, int message_size, int errnum, char *data, const char
*format, ...);

Theexplain_message_errno_sprintffunction is used to obtain an explanation of an error returned by the
sprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

812

explain_sprintf(3) explain_sprintf(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thesprintf(3) system call.

format The original format, exactly as passed to thesprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = sprintf(data, format, ...);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_sprintf(message, sizeof(message), err,
data, format, ...);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_sprintf_or_die(3) function.

SEE ALSO
sprintf(3)

formatted output conversion

explain_sprintf_or_die(3)
formatted output conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

813

explain_sprintf_or_die(3) explain_sprintf_or_die(3)

NAME
explain_sprintf_or_die − formatted output conversion and report errors

SYNOPSIS
#include <libexplain/sprintf.h>

int explain_sprintf_or_die(char *data, const char *format, ...);
int explain_sprintf_on_error(char *data, const char *format, ...);

DESCRIPTION
The explain_sprintf_or_die function is used to call thesprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_sprintf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_sprintf_on_error function is used to call thesprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_sprintf(3) function, but still returns to the caller.

data The data, exactly as to be passed to thesprintf(3) system call.

format The format, exactly as to be passed to thesprintf(3) system call.

RETURN VALUE
The explain_sprintf_or_die function only returns on success, seesprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_sprintf_on_error function always returns the value return by the wrappedsprintf(3) system
call.

EXAMPLE
Theexplain_sprintf_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_sprintf_or_die(data, format, ...);

SEE ALSO
sprintf(3)

formatted output conversion

explain_sprintf(3)
explainsprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

814

explain_stat(3) explain_stat(3)

NAME
explain_stat − explain stat(2) errors

SYNOPSIS
#include <libexplain/stat.h>
const char *explain_stat(const char *pathname, const struct stat *buf);
void explain_message_stat(char *message, int message_size, const char *pathname, const struct stat *buf);
const char *explain_errno_stat(int errnum, const char *pathname, const struct stat *buf);
void explain_message_errno_stat(char *message, int message_size, int errnum, const char *pathname,
const struct stat *buf);

DESCRIPTION
These functions may be used to obtain explanations forstat(2) errors .

explain_errno_stat
const char *explain_errno_stat(int errnum, const char *pathname, const struct stat *buf);

The explain_errno_stat function is used to obtain an explanation of an error returned by thestat(2) function.
The least the message will contain is the value of strerror(errnum) , but usually it will do much
better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (stat(pathname, &buf) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_stat(err, pathname, &buf));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thestat(2) system call.

buf The original buf, exactly as passed to thestat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_errno_stat
void explain_message_errno_stat(char *message, int message_size, int errnum, const char *pathname,
const struct stat *buf);

The explain_message_errno_stat function is used to obtain an explanation of an error returned by the
stat(2) function. The least the message will contain is the value ofstrerror(errnum) , but usually it
will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (stat(pathname, &buf) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_stat(message, sizeof(message), err,

pathname, &buf);
fprintf(stderr, "%s\n", message);

815

explain_stat(3) explain_stat(3)

exit(EXIT_FAILURE);
}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thestat(2) system call.

buf The original buf, exactly as passed to thestat(2) system call.

explain_message_stat
void explain_message_stat(char *message, int message_size, const char *pathname, const struct stat *buf);

The explain_message_stat function is used to obtain an explanation of an error returned by thestat(2)
function. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (stat(pathname, &buf) < 0)
{

char message[3000];
explain_message_stat(message, sizeof(message), pathname, &buf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thestat(2) system call.

buf The original buf, exactly as passed to thestat(2) system call.

explain_stat
const char *explain_stat(const char *pathname, const struct stat * buf);

The explain_stat function is used to obtain an explanation of an error returned by thestat(2) function. The
least the message will contain is the value ofstrerror(errno) , but usually it will do much better, and
indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (stat(pathname, &buf) < 0)
{

fprintf(stderr, "%s\n", explain_stat(pathname, &buf));
exit(EXIT_FAILURE);

}

816

explain_stat(3) explain_stat(3)

pathname
The original pathname, exactly as passed to thestat(2) system call.

buf The original buf, exactly as passed to thestat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

817

explain_statfs(3) explain_statfs(3)

NAME
explain_statfs − explain statfs(2) errors

SYNOPSIS
#include <libexplain/statfs.h>

const char *explain_statfs(const char *pathname, struct statfs *data);
const char *explain_errno_statfs(int errnum, const char *pathname, struct statfs *data);
void explain_message_statfs(char *message, int message_size, const char *pathname, struct statfs *data);
void explain_message_errno_statfs(char *message, int message_size, int errnum, const char *pathname,
struct statfs *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestatfs(2) system call.

explain_statfs
const char *explain_statfs(const char *pathname, struct statfs *data);

The explain_statfs function is used to obtain an explanation of an error returned by thestatfs(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to thestatfs(2) system call.

data The original data, exactly as passed to thestatfs(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (statfs(pathname, data) < 0)
{

fprintf(stderr, "%s\n", explain_statfs(pathname, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_statfs_or_die(3) function.

explain_errno_statfs
const char *explain_errno_statfs(int errnum, const char *pathname, struct statfs *data);

The explain_errno_statfs function is used to obtain an explanation of an error returned by thestatfs(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thestatfs(2) system call.

data The original data, exactly as passed to thestatfs(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

818

explain_statfs(3) explain_statfs(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (statfs(pathname, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_statfs(err, pathname,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_statfs_or_die(3) function.

explain_message_statfs
void explain_message_statfs(char *message, int message_size, const char *pathname, struct statfs *data);

Theexplain_message_statfsfunction is used to obtain an explanation of an error returned by thestatfs(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thestatfs(2) system call.

data The original data, exactly as passed to thestatfs(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (statfs(pathname, data) < 0)
{

char message[3000];
explain_message_statfs(message, sizeof(message), pathname,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_statfs_or_die(3) function.

explain_message_errno_statfs
void explain_message_errno_statfs(char *message, int message_size, int errnum, const char *pathname,
struct statfs *data);

The explain_message_errno_statfsfunction is used to obtain an explanation of an error returned by the
statfs(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

819

explain_statfs(3) explain_statfs(3)

pathname
The original pathname, exactly as passed to thestatfs(2) system call.

data The original data, exactly as passed to thestatfs(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (statfs(pathname, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_statfs(message, sizeof(message), err,
pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_statfs_or_die(3) function.

SEE ALSO
statfs(2) get file system statistics

explain_statfs_or_die(3)
get file system statistics and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

820

explain_statfs_or_die(3) explain_statfs_or_die(3)

NAME
explain_statfs_or_die − get file system statistics and report errors

SYNOPSIS
#include <libexplain/statfs.h>

void explain_statfs_or_die(const char *pathname, struct statfs *data);
int explain_statfs_on_error(const char *pathname, struct statfs *data);

DESCRIPTION
Theexplain_statfs_or_diefunction is used to call thestatfs(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_statfs(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_statfs_on_error function is used to call thestatfs(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_statfs(3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed to thestatfs(2) system call.

data The data, exactly as to be passed to thestatfs(2) system call.

RETURN VALUE
Theexplain_statfs_or_diefunction only returns on success, seestatfs(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_statfs_on_errorfunction always returns the value return by the wrappedstatfs(2) system call.

EXAMPLE
Theexplain_statfs_or_diefunction is intended to be used in a fashion similar to the following example:

explain_statfs_or_die(pathname, data);

SEE ALSO
statfs(2) get file system statistics

explain_statfs(3)
explainstatfs(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

821

explain_stat_or_die(3) explain_stat_or_die(3)

NAME
explain_stat_or_die − get file status and report errors

SYNOPSIS
#include <libexplain/stat.h>

void explain_stat_or_die(const char *pathname, struct stat *buf);

DESCRIPTION
Theexplain_stat_or_diefunction is used to call thestat(2) system call. On failure an explanation will be
printed to stderr, obtained from explain_stat(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_stat_or_die(pathname, buf);

pathname
The pathname, exactly as to be passed to thestat(2) system call.

buf The buf, exactly as to be passed to thestat(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
stat(2) get file status

explain_stat(3)
explainstat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

822

explain_statvfs(3) explain_statvfs(3)

NAME
explain_statvfs − explainstatvfs(2) errors

SYNOPSIS
#include <libexplain/statvfs.h>

const char *explain_statvfs(const char *pathname, struct statvfs *data);
const char *explain_errno_statvfs(int errnum, const char *pathname, struct statvfs *data);
void explain_message_statvfs(char *message, int message_size, const char *pathname, struct statvfs
*data);
void explain_message_errno_statvfs(char *message, int message_size, int errnum, const char *pathname,
struct statvfs *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestatvfs(2) system call.

explain_statvfs
const char *explain_statvfs(const char *pathname, struct statvfs *data);

Theexplain_statvfsfunction is used to obtain an explanation of an error returned by thestatvfs(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to thestatvfs(2) system call.

data The original data, exactly as passed to thestatvfs(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (statvfs(pathname, data) < 0)
{

fprintf(stderr, "%s\n", explain_statvfs(pathname, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_statvfs_or_die(3) function.

explain_errno_statvfs
const char *explain_errno_statvfs(int errnum, const char *pathname, struct statvfs *data);

The explain_errno_statvfs function is used to obtain an explanation of an error returned by thestatvfs(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thestatvfs(2) system call.

data The original data, exactly as passed to thestatvfs(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

823

explain_statvfs(3) explain_statvfs(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (statvfs(pathname, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_statvfs(err, pathname,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_statvfs_or_die(3) function.

explain_message_statvfs
void explain_message_statvfs(char *message, int message_size, const char *pathname, struct statvfs
*data);

The explain_message_statvfsfunction is used to obtain an explanation of an error returned by the
statvfs(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thestatvfs(2) system call.

data The original data, exactly as passed to thestatvfs(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (statvfs(pathname, data) < 0)
{

char message[3000];
explain_message_statvfs(message, sizeof(message), pathname,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_statvfs_or_die(3) function.

explain_message_errno_statvfs
void explain_message_errno_statvfs(char *message, int message_size, int errnum, const char *pathname,
struct statvfs *data);

The explain_message_errno_statvfsfunction is used to obtain an explanation of an error returned by the
statvfs(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

824

explain_statvfs(3) explain_statvfs(3)

explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thestatvfs(2) system call.

data The original data, exactly as passed to thestatvfs(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (statvfs(pathname, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_statvfs(message, sizeof(message), err,
pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_statvfs_or_die(3) function.

SEE ALSO
statvfs(2)

get file system statistics

explain_statvfs_or_die(3)
get file system statistics and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

825

explain_statvfs_or_die(3) explain_statvfs_or_die(3)

NAME
explain_statvfs_or_die − get file system statistics and report errors

SYNOPSIS
#include <libexplain/statvfs.h>

void explain_statvfs_or_die(const char *pathname, struct statvfs *data);
int explain_statvfs_on_error(const char *pathname, struct statvfs *data);

DESCRIPTION
The explain_statvfs_or_diefunction is used to call thestatvfs(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_statvfs(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_statvfs_on_errorfunction is used to call thestatvfs(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_statvfs(3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed to thestatvfs(2) system call.

data The data, exactly as to be passed to thestatvfs(2) system call.

RETURN VALUE
The explain_statvfs_or_die function only returns on success, seestatvfs(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_statvfs_on_error function always returns the value return by the wrappedstatvfs(2) system
call.

EXAMPLE
Theexplain_statvfs_or_diefunction is intended to be used in a fashion similar to the following example:

explain_statvfs_or_die(pathname, data);

SEE ALSO
statvfs(2)

get file system statistics

explain_statvfs(3)
explainstatvfs(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

826

explain_stime(3) explain_stime(3)

NAME
explain_stime − explainstime(2) errors

SYNOPSIS
#include <libexplain/stime.h>

const char *explain_stime(time_t *t);
const char *explain_errno_stime(int errnum, time_t *t);
void explain_message_stime(char *message, int message_size, time_t *t);
void explain_message_errno_stime(char *message, int message_size, int errnum, time_t *t);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestime(2) system call.

explain_stime
const char *explain_stime(time_t *t);

The explain_stime function is used to obtain an explanation of an error returned by thestime(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

t The original t, exactly as passed to thestime(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (stime(t) < 0)
{

fprintf(stderr, "%s\n", explain_stime(t));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_stime_or_die(3) function.

explain_errno_stime
const char *explain_errno_stime(int errnum, time_t *t);

The explain_errno_stime function is used to obtain an explanation of an error returned by thestime(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

t The original t, exactly as passed to thestime(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (stime(t) < 0)
{

827

explain_stime(3) explain_stime(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_stime(err, t));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_stime_or_die(3) function.

explain_message_stime
void explain_message_stime(char *message, int message_size, time_t *t);

Theexplain_message_stimefunction is used to obtain an explanation of an error returned by thestime(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

t The original t, exactly as passed to thestime(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (stime(t) < 0)
{

char message[3000];
explain_message_stime(message, sizeof(message), t);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_stime_or_die(3) function.

explain_message_errno_stime
void explain_message_errno_stime(char *message, int message_size, int errnum, time_t *t);

The explain_message_errno_stimefunction is used to obtain an explanation of an error returned by the
stime(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

t The original t, exactly as passed to thestime(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (stime(t) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_stime(message, sizeof(message), err, t);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_stime_or_die(3) function.

828

explain_stime(3) explain_stime(3)

SEE ALSO
stime(2) set system time

explain_stime_or_die(3)
set system time and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

829

explain_stime_or_die(3) explain_stime_or_die(3)

NAME
explain_stime_or_die − set system time and report errors

SYNOPSIS
#include <libexplain/stime.h>

void explain_stime_or_die(time_t *t);
int explain_stime_on_error(time_t *t);

DESCRIPTION
Theexplain_stime_or_diefunction is used to call thestime(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_stime(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_stime_on_error function is used to call thestime(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_stime(3) function, but still returns to the caller.

t The t, exactly as to be passed to thestime(2) system call.

RETURN VALUE
Theexplain_stime_or_diefunction only returns on success, seestime(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_stime_on_errorfunction always returns the value return by the wrappedstime(2) system call.

EXAMPLE
Theexplain_stime_or_diefunction is intended to be used in a fashion similar to the following example:

explain_stime_or_die(t);

SEE ALSO
stime(2) set system time

explain_stime(3)
explainstime(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

830

explain_strcoll(3) explain_strcoll(3)

NAME
explain_strcoll − explainstrcoll(3) errors

SYNOPSIS
#include <libexplain/strcoll.h>

const char *explain_strcoll(const char *s1, const char *s2);
const char *explain_errno_strcoll(int errnum, const char *s1, const char *s2);
void explain_message_strcoll(char *message, int message_size, const char *s1, const char *s2);
void explain_message_errno_strcoll(char *message, int message_size, int errnum, const char *s1, const
char *s2);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrcoll(3) system call.

explain_strcoll
const char *explain_strcoll(const char *s1, const char *s2);

The explain_strcoll function is used to obtain an explanation of an error returned by thestrcoll(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

s1 The original s1, exactly as passed to thestrcoll(3) system call.

s2 The original s2, exactly as passed to thestrcoll(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = strcoll(s1, s2);
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_strcoll(s1, s2));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_strcoll_or_die(3) function.

explain_errno_strcoll
const char *explain_errno_strcoll(int errnum, const char *s1, const char *s2);

The explain_errno_strcoll function is used to obtain an explanation of an error returned by thestrcoll(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

s1 The original s1, exactly as passed to thestrcoll(3) system call.

s2 The original s2, exactly as passed to thestrcoll(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

831

explain_strcoll(3) explain_strcoll(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = strcoll(s1, s2);
if (result < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strcoll(err, s1, s2));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_strcoll_or_die(3) function.

explain_message_strcoll
void explain_message_strcoll(char *message, int message_size, const char *s1, const char *s2);

The explain_message_strcollfunction is used to obtain an explanation of an error returned by the
strcoll(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

s1 The original s1, exactly as passed to thestrcoll(3) system call.

s2 The original s2, exactly as passed to thestrcoll(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = strcoll(s1, s2);
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_strcoll(message, sizeof(message), s1, s2);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_strcoll_or_die(3) function.

explain_message_errno_strcoll
void explain_message_errno_strcoll(char *message, int message_size, int errnum, const char *s1, const
char *s2);

The explain_message_errno_strcollfunction is used to obtain an explanation of an error returned by the
strcoll(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

832

explain_strcoll(3) explain_strcoll(3)

s1 The original s1, exactly as passed to thestrcoll(3) system call.

s2 The original s2, exactly as passed to thestrcoll(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = strcoll(s1, s2);
if (result < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_strcoll(message, sizeof(message), err,
s1, s2);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_strcoll_or_die(3) function.

SEE ALSO
strcoll(3)

compare two strings using the current locale

explain_strcoll_or_die(3)
compare two strings using the current locale and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

833

explain_strcoll_or_die(3) explain_strcoll_or_die(3)

NAME
explain_strcoll_or_die − compare strings using current locale and report errors

SYNOPSIS
#include <libexplain/strcoll.h>

int explain_strcoll_or_die(const char *s1, const char *s2);
int explain_strcoll_on_error(const char *s1, const char *s2);

DESCRIPTION
Theexplain_strcoll_or_diefunction is used to call thestrcoll(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_strcoll(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_strcoll_on_error function is used to call thestrcoll(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strcoll(3) function, but still returns to the caller.

s1 The s1, exactly as to be passed to thestrcoll(3) system call.

s2 The s2, exactly as to be passed to thestrcoll(3) system call.

RETURN VALUE
The explain_strcoll_or_die function only returns on success, seestrcoll(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_strcoll_on_error function always returns the value return by the wrappedstrcoll(3) system
call.

EXAMPLE
Theexplain_strcoll_or_diefunction is intended to be used in a fashion similar to the following example:

int result = explain_strcoll_or_die(s1, s2);

SEE ALSO
strcoll(3)

compare two strings using the current locale

explain_strcoll(3)
explainstrcoll(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

834

explain_strdup(3) explain_strdup(3)

NAME
explain_strdup − explain strdup(3) errors

SYNOPSIS
#include <libexplain/strdup.h>

const char *explain_strdup(const char *data);
const char *explain_errno_strdup(int errnum, const char *data);
void explain_message_strdup(char *message, int message_size, const char *data);
void explain_message_errno_strdup(char *message, int message_size, int errnum, const char *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrdup(3) system call.

explain_strdup
const char *explain_strdup(const char *data);

Theexplain_strdup function is used to obtain an explanation of an error returned by thestrdup(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thestrdup(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = strdup(data);
if (!result)
{

fprintf(stderr, "%s\n", explain_strdup(data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strdup_or_die(3) function.

explain_errno_strdup
const char *explain_errno_strdup(int errnum, const char *data);

The explain_errno_strdup function is used to obtain an explanation of an error returned by thestrdup(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thestrdup(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = strdup(data);

835

explain_strdup(3) explain_strdup(3)

if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strdup(err, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strdup_or_die(3) function.

explain_message_strdup
void explain_message_strdup(char *message, int message_size, const char *data);

The explain_message_strdupfunction is used to obtain an explanation of an error returned by the
strdup(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thestrdup(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = strdup(data);
if (!result)
{

char message[3000];
explain_message_strdup(message, sizeof(message), data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strdup_or_die(3) function.

explain_message_errno_strdup
void explain_message_errno_strdup(char *message, int message_size, int errnum, const char *data);

The explain_message_errno_strdupfunction is used to obtain an explanation of an error returned by the
strdup(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thestrdup(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = strdup(data);
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_strdup(message, sizeof(message), err,

836

explain_strdup(3) explain_strdup(3)

data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strdup_or_die(3) function.

SEE ALSO
strdup(3)

duplicate a string

explain_strdup_or_die(3)
duplicate a string and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

837

explain_strdup_or_die(3) explain_strdup_or_die(3)

NAME
explain_strdup_or_die − duplicate a string and report errors

SYNOPSIS
#include <libexplain/strdup.h>

char *explain_strdup_or_die(const char *data);
char *explain_strdup_on_error(const char *data);

DESCRIPTION
The explain_strdup_or_die function is used to call thestrdup(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strdup(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_strdup_on_error function is used to call thestrdup(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strdup(3) function, but still returns to the caller.

data The data, exactly as to be passed to thestrdup(3) system call.

RETURN VALUE
The explain_strdup_or_die function only returns on success, seestrdup(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_strdup_on_error function always returns the value return by the wrappedstrdup(3) system
call.

EXAMPLE
Theexplain_strdup_or_diefunction is intended to be used in a fashion similar to the following example:

char *result = explain_strdup_or_die(data);

SEE ALSO
strdup(3)

duplicate a string

explain_strdup(3)
explainstrdup(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

838

explain_strndup(3) explain_strndup(3)

NAME
explain_strndup − explain strndup(3) errors

SYNOPSIS
#include <libexplain/strndup.h>

const char *explain_strndup(const char *data, size_t data_size);
const char *explain_errno_strndup(int errnum, const char *data, size_t data_size);
void explain_message_strndup(char *message, int message_size, const char *data, size_t data_size);
void explain_message_errno_strndup(char *message, int message_size, int errnum, const char *data, size_t
data_size);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrndup(3) system call.

explain_strndup
const char *explain_strndup(const char *data, size_t data_size);

The explain_strndup function is used to obtain an explanation of an error returned by thestrndup(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thestrndup(3) system call.

data_size
The original data_size, exactly as passed to thestrndup(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = strndup(data, data_size);
if (!result)
{

fprintf(stderr, "%s\n", explain_strndup(data, data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strndup_or_die(3) function.

explain_errno_strndup
const char *explain_errno_strndup(int errnum, const char *data, size_t data_size);

The explain_errno_strndup function is used to obtain an explanation of an error returned by the
strndup(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thestrndup(3) system call.

data_size
The original data_size, exactly as passed to thestrndup(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

839

explain_strndup(3) explain_strndup(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = strndup(data, data_size);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strndup(err, data,
data_size));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strndup_or_die(3) function.

explain_message_strndup
void explain_message_strndup(char *message, int message_size, const char *data, size_t data_size);

The explain_message_strndupfunction is used to obtain an explanation of an error returned by the
strndup(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thestrndup(3) system call.

data_size
The original data_size, exactly as passed to thestrndup(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = strndup(data, data_size);
if (!result)
{

char message[3000];
explain_message_strndup(message, sizeof(message), data,
data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strndup_or_die(3) function.

explain_message_errno_strndup
void explain_message_errno_strndup(char *message, int message_size, int errnum, const char *data, size_t
data_size);

Theexplain_message_errno_strndupfunction is used to obtain an explanation of an error returned by the
strndup(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

840

explain_strndup(3) explain_strndup(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thestrndup(3) system call.

data_size
The original data_size, exactly as passed to thestrndup(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = strndup(data, data_size);
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_strndup(message, sizeof(message), err,
data, data_size);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strndup_or_die(3) function.

SEE ALSO
strndup(3)

duplicate a string

explain_strndup_or_die(3)
duplicate a string and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

841

explain_strndup_or_die(3) explain_strndup_or_die(3)

NAME
explain_strndup_or_die − duplicate a string and report errors

SYNOPSIS
#include <libexplain/strndup.h>

char *explain_strndup_or_die(const char *data, size_t data_size);
char *explain_strndup_on_error(const char *data, size_t data_size);

DESCRIPTION
Theexplain_strndup_or_die function is used to call thestrndup(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strndup(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_strndup_on_error function is used to call thestrndup(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_strndup(3) function, but still returns to the
caller.

data The data, exactly as to be passed to thestrndup(3) system call.

data_size
The data_size, exactly as to be passed to thestrndup(3) system call.

RETURN VALUE
The explain_strndup_or_die function only returns on success, seestrndup(3) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_strndup_on_error function always returns the value return by the wrappedstrndup(3) system
call.

EXAMPLE
Theexplain_strndup_or_diefunction is intended to be used in a fashion similar to the following example:

char *result = explain_strndup_or_die(data, data_size);

SEE ALSO
strndup(3)

duplicate a string

explain_strndup(3)
explainstrndup(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

842

explain_strtod(3) explain_strtod(3)

NAME
explain_strtod − explain strtod(3) errors

SYNOPSIS
#include <libexplain/strtod.h>

const char *explain_strtod(const char *nptr, char **endptr);
const char *explain_errno_strtod(int errnum, const char *nptr, char **endptr);
void explain_message_strtod(char *message, int message_size, const char *nptr, char **endptr);
void explain_message_errno_strtod(char *message, int message_size, int errnum, const char *nptr, char
**endptr);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrtod(3) system call.

explain_strtod
const char *explain_strtod(const char *nptr, char **endptr);

The explain_strtod function is used to obtain an explanation of an error returned by thestrtod(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

nptr The original nptr, exactly as passed to thestrtod(3) system call.

endptr The original endptr, exactly as passed to thestrtod(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
double result = strtod(nptr, endptr);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_strtod(nptr, endptr));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtod_or_die(3) function.

explain_errno_strtod
const char *explain_errno_strtod(int errnum, const char *nptr, char **endptr);

The explain_errno_strtod function is used to obtain an explanation of an error returned by thestrtod(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtod(3) system call.

endptr The original endptr, exactly as passed to thestrtod(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

843

explain_strtod(3) explain_strtod(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
double result = strtod(nptr, endptr);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strtod(err, nptr,
endptr));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtod_or_die(3) function.

explain_message_strtod
void explain_message_strtod(char *message, int message_size, const char *nptr, char **endptr);

Theexplain_message_strtodfunction is used to obtain an explanation of an error returned by thestrtod(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nptr The original nptr, exactly as passed to thestrtod(3) system call.

endptr The original endptr, exactly as passed to thestrtod(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
double result = strtod(nptr, endptr);
if (result < 0)
{

char message[3000];
explain_message_strtod(message, sizeof(message), nptr,
endptr);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtod_or_die(3) function.

explain_message_errno_strtod
void explain_message_errno_strtod(char *message, int message_size, int errnum, const char *nptr, char
**endptr);

The explain_message_errno_strtodfunction is used to obtain an explanation of an error returned by the
strtod(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

844

explain_strtod(3) explain_strtod(3)

nptr The original nptr, exactly as passed to thestrtod(3) system call.

endptr The original endptr, exactly as passed to thestrtod(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
double result = strtod(nptr, endptr);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_strtod(message, sizeof(message), err,
nptr, endptr);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtod_or_die(3) function.

SEE ALSO
strtod(3) convert ASCII string to floating-point number

explain_strtod_or_die(3)
convert ASCII string to floating-point number and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

845

explain_strtod_or_die(3) explain_strtod_or_die(3)

NAME
explain_strtod_or_die − convert string to number and report errors

SYNOPSIS
#include <libexplain/strtod.h>

double explain_strtod_or_die(const char *nptr, char **endptr);
double explain_strtod_on_error(const char *nptr, char **endptr))

DESCRIPTION
Theexplain_strtod_or_die function is used to call thestrtod(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_strtod(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_strtod_on_error function is used to call thestrtod(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtod(3) function, but still returns to the caller.

nptr The nptr, exactly as to be passed to thestrtod(3) system call.

endptr The endptr, exactly as to be passed to thestrtod(3) system call.

RETURN VALUE
The explain_strtod_or_die function only returns on success, seestrtod(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_strtod_on_error function always returns the value return by the wrappedstrtod(3) system
call.

EXAMPLE
Theexplain_strtod_or_diefunction is intended to be used in a fashion similar to the following example:

double result = explain_strtod_or_die(nptr, endptr);

SEE ALSO
strtod(3) convert ASCII string to floating-point number

explain_strtod(3)
explainstrtod(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

846

explain_strtof(3) explain_strtof(3)

NAME
explain_strtof − explain strtof(3) errors

SYNOPSIS
#include <libexplain/strtof.h>

const char *explain_strtof(const char *nptr, char **endptr);
const char *explain_errno_strtof(int errnum, const char *nptr, char **endptr);
void explain_message_strtof(char *message, int message_size, const char *nptr, char **endptr);
void explain_message_errno_strtof(char *message, int message_size, int errnum, const char *nptr, char
**endptr);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrtof(3) system call.

explain_strtof
const char *explain_strtof(const char *nptr, char **endptr);

The explain_strtof function is used to obtain an explanation of an error returned by thestrtof(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

nptr The original nptr, exactly as passed to thestrtof(3) system call.

endptr The original endptr, exactly as passed to thestrtof(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
float result = strtof(nptr, endptr);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_strtof(nptr, endptr));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtof_or_die(3) function.

explain_errno_strtof
const char *explain_errno_strtof(int errnum, const char *nptr, char **endptr);

The explain_errno_strtof function is used to obtain an explanation of an error returned by thestrtof(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtof(3) system call.

endptr The original endptr, exactly as passed to thestrtof(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

847

explain_strtof(3) explain_strtof(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
float result = strtof(nptr, endptr);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strtof(err, nptr,
endptr));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtof_or_die(3) function.

explain_message_strtof
void explain_message_strtof(char *message, int message_size, const char *nptr, char **endptr);

Theexplain_message_strtoffunction is used to obtain an explanation of an error returned by thestrtof(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nptr The original nptr, exactly as passed to thestrtof(3) system call.

endptr The original endptr, exactly as passed to thestrtof(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
float result = strtof(nptr, endptr);
if (result < 0)
{

char message[3000];
explain_message_strtof(message, sizeof(message), nptr,
endptr);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtof_or_die(3) function.

explain_message_errno_strtof
void explain_message_errno_strtof(char *message, int message_size, int errnum, const char *nptr, char
**endptr);

The explain_message_errno_strtoffunction is used to obtain an explanation of an error returned by the
strtof(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

848

explain_strtof(3) explain_strtof(3)

nptr The original nptr, exactly as passed to thestrtof(3) system call.

endptr The original endptr, exactly as passed to thestrtof(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
float result = strtof(nptr, endptr);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_strtof(message, sizeof(message), err,
nptr, endptr);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtof_or_die(3) function.

SEE ALSO
strtof(3) convert ASCII string to floating-point number

explain_strtof_or_die(3)
convert ASCII string to floating-point number and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

849

explain_strtof_or_die(3) explain_strtof_or_die(3)

NAME
explain_strtof_or_die − convert string to number and report errors

SYNOPSIS
#include <libexplain/strtof.h>

float explain_strtof_or_die(const char *nptr, char **endptr);
float explain_strtof_on_error(const char *nptr, char **endptr))

DESCRIPTION
Theexplain_strtof_or_die function is used to call thestrtof(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_strtof(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_strtof_on_error function is used to call thestrtof(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtof(3) function, but still returns to the caller.

nptr The nptr, exactly as to be passed to thestrtof(3) system call.

endptr The endptr, exactly as to be passed to thestrtof(3) system call.

RETURN VALUE
Theexplain_strtof_or_die function only returns on success, seestrtof(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_strtof_on_error function always returns the value return by the wrappedstrtof(3) system call.

EXAMPLE
Theexplain_strtof_or_die function is intended to be used in a fashion similar to the following example:

float result = explain_strtof_or_die(nptr, endptr);

SEE ALSO
strtof(3) convert ASCII string to floating-point number

explain_strtof(3)
explainstrtof(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

850

explain_strtol(3) explain_strtol(3)

NAME
explain_strtol − explain strtol(3) errors

SYNOPSIS
#include <libexplain/strtol.h>

const char *explain_strtol(const char *nptr, char **endptr, int base);
const char *explain_errno_strtol(int errnum, const char *nptr, char **endptr, int base);
void explain_message_strtol(char *message, int message_size, const char *nptr, char **endptr, int base);
void explain_message_errno_strtol(char *message, int message_size, int errnum, const char *nptr, char
**endptr, int base);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrtol(3) system call.

explain_strtol
const char *explain_strtol(const char *nptr, char **endptr, int base);

The explain_strtol function is used to obtain an explanation of an error returned by thestrtol(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

nptr The original nptr, exactly as passed to thestrtol(3) system call.

endptr The original endptr, exactly as passed to thestrtol(3) system call.

base The original base, exactly as passed to thestrtol(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = strtol(nptr, endptr, base);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_strtol(nptr, endptr, base));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtol_or_die(3) function.

explain_errno_strtol
const char *explain_errno_strtol(int errnum, const char *nptr, char **endptr, int base);

The explain_errno_strtol function is used to obtain an explanation of an error returned by thestrtol(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtol(3) system call.

endptr The original endptr, exactly as passed to thestrtol(3) system call.

base The original base, exactly as passed to thestrtol(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

851

explain_strtol(3) explain_strtol(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long result = strtol(nptr, endptr, base);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strtol(err, nptr,
endptr, base));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtol_or_die(3) function.

explain_message_strtol
void explain_message_strtol(char *message, int message_size, const char *nptr, char **endptr, int base);

Theexplain_message_strtolfunction is used to obtain an explanation of an error returned by thestrtol(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nptr The original nptr, exactly as passed to thestrtol(3) system call.

endptr The original endptr, exactly as passed to thestrtol(3) system call.

base The original base, exactly as passed to thestrtol(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = strtol(nptr, endptr, base);
if (result < 0)
{

char message[3000];
explain_message_strtol(message, sizeof(message), nptr, endptr,
base);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtol_or_die(3) function.

explain_message_errno_strtol
void explain_message_errno_strtol(char *message, int message_size, int errnum, const char *nptr, char
**endptr, int base);

The explain_message_errno_strtolfunction is used to obtain an explanation of an error returned by the
strtol(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

852

explain_strtol(3) explain_strtol(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtol(3) system call.

endptr The original endptr, exactly as passed to thestrtol(3) system call.

base The original base, exactly as passed to thestrtol(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long result = strtol(nptr, endptr, base);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_strtol(message, sizeof(message), err,
nptr, endptr, base);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtol_or_die(3) function.

SEE ALSO
strtol(3) convert a string to a long integer

explain_strtol_or_die(3)
convert a string to a long integer and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

853

explain_strtold(3) explain_strtold(3)

NAME
explain_strtold − explain strtold(3) errors

SYNOPSIS
#include <libexplain/strtold.h>

const char *explain_strtold(const char *nptr, char **endptr);
const char *explain_errno_strtold(int errnum, const char *nptr, char **endptr);
void explain_message_strtold(char *message, int message_size, const char *nptr, char **endptr);
void explain_message_errno_strtold(char *message, int message_size, int errnum, const char *nptr, char
**endptr);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrtold(3) system call.

explain_strtold
const char *explain_strtold(const char *nptr, char **endptr);

Theexplain_strtold function is used to obtain an explanation of an error returned by thestrtold(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

nptr The original nptr, exactly as passed to thestrtold(3) system call.

endptr The original endptr, exactly as passed to thestrtold(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long double result = strtold(nptr, endptr);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_strtold(nptr, endptr));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtold_or_die(3) function.

explain_errno_strtold
const char *explain_errno_strtold(int errnum, const char *nptr, char **endptr);

Theexplain_errno_strtold function is used to obtain an explanation of an error returned by thestrtold(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtold(3) system call.

endptr The original endptr, exactly as passed to thestrtold(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

854

explain_strtold(3) explain_strtold(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long double result = strtold(nptr, endptr);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strtold(err, nptr,
endptr));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtold_or_die(3) function.

explain_message_strtold
void explain_message_strtold(char *message, int message_size, const char *nptr, char **endptr);

The explain_message_strtoldfunction is used to obtain an explanation of an error returned by the
strtold(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nptr The original nptr, exactly as passed to thestrtold(3) system call.

endptr The original endptr, exactly as passed to thestrtold(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long double result = strtold(nptr, endptr);
if (result < 0)
{

char message[3000];
explain_message_strtold(message, sizeof(message), nptr,
endptr);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtold_or_die(3) function.

explain_message_errno_strtold
void explain_message_errno_strtold(char *message, int message_size, int errnum, const char *nptr, char
**endptr);

The explain_message_errno_strtoldfunction is used to obtain an explanation of an error returned by the
strtold(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

855

explain_strtold(3) explain_strtold(3)

nptr The original nptr, exactly as passed to thestrtold(3) system call.

endptr The original endptr, exactly as passed to thestrtold(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long double result = strtold(nptr, endptr);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_strtold(message, sizeof(message), err,
nptr, endptr);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtold_or_die(3) function.

SEE ALSO
strtold(3)

convert ASCII string to floating-point number

explain_strtold_or_die(3)
convert ASCII string to floating-point number and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

856

explain_strtold_or_die(3) explain_strtold_or_die(3)

NAME
explain_strtold_or_die − convert string to number and report errors

SYNOPSIS
#include <libexplain/strtold.h>

long double explain_strtold_or_die(const char *nptr, char **endptr);
long double explain_strtold_on_error(const char *nptr, char **endptr))

DESCRIPTION
The explain_strtold_or_die function is used to call thestrtold(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtold(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_strtold_on_error function is used to call thestrtold(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtold(3) function, but still returns to the caller.

nptr The nptr, exactly as to be passed to thestrtold(3) system call.

endptr The endptr, exactly as to be passed to thestrtold(3) system call.

RETURN VALUE
The explain_strtold_or_die function only returns on success, seestrtold(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_strtold_on_error function always returns the value return by the wrappedstrtold(3) system
call.

EXAMPLE
Theexplain_strtold_or_die function is intended to be used in a fashion similar to the following example:

long double result = explain_strtold_or_die(nptr, endptr);

SEE ALSO
strtold(3)

convert ASCII string to floating-point number

explain_strtold(3)
explainstrtold(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

857

explain_strtoll(3) explain_strtoll(3)

NAME
explain_strtoll − explain strtoll(3) errors

SYNOPSIS
#include <libexplain/strtoll.h>

const char *explain_strtoll(const char *nptr, char **endptr, int base);
const char *explain_errno_strtoll(int errnum, const char *nptr, char **endptr, int base);
void explain_message_strtoll(char *message, int message_size, const char *nptr, char **endptr, int base);
void explain_message_errno_strtoll(char *message, int message_size, int errnum, const char *nptr, char
**endptr, int base);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrtoll(3) system call.

explain_strtoll
const char *explain_strtoll(const char *nptr, char **endptr, int base);

The explain_strtoll function is used to obtain an explanation of an error returned by thestrtoll(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

nptr The original nptr, exactly as passed to thestrtoll(3) system call.

endptr The original endptr, exactly as passed to thestrtoll(3) system call.

base The original base, exactly as passed to thestrtoll(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long long result = strtoll(nptr, endptr, base);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_strtoll(nptr, endptr, base));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoll_or_die(3) function.

explain_errno_strtoll
const char *explain_errno_strtoll(int errnum, const char *nptr, char **endptr, int base);

The explain_errno_strtoll function is used to obtain an explanation of an error returned by thestrtoll(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtoll(3) system call.

endptr The original endptr, exactly as passed to thestrtoll(3) system call.

base The original base, exactly as passed to thestrtoll(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

858

explain_strtoll(3) explain_strtoll(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
long long result = strtoll(nptr, endptr, base);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strtoll(err, nptr,
endptr, base));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoll_or_die(3) function.

explain_message_strtoll
void explain_message_strtoll(char *message, int message_size, const char *nptr, char **endptr, int base);

Theexplain_message_strtollfunction is used to obtain an explanation of an error returned by thestrtoll(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nptr The original nptr, exactly as passed to thestrtoll(3) system call.

endptr The original endptr, exactly as passed to thestrtoll(3) system call.

base The original base, exactly as passed to thestrtoll(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long long result = strtoll(nptr, endptr, base);
if (result < 0)
{

char message[3000];
explain_message_strtoll(message, sizeof(message), nptr,
endptr, base);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoll_or_die(3) function.

explain_message_errno_strtoll
void explain_message_errno_strtoll(char *message, int message_size, int errnum, const char *nptr, char
**endptr, int base);

The explain_message_errno_strtollfunction is used to obtain an explanation of an error returned by the
strtoll(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

859

explain_strtoll(3) explain_strtoll(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtoll(3) system call.

endptr The original endptr, exactly as passed to thestrtoll(3) system call.

base The original base, exactly as passed to thestrtoll(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
long long result = strtoll(nptr, endptr, base);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_strtoll(message, sizeof(message), err,
nptr, endptr, base);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoll_or_die(3) function.

SEE ALSO
strtoll(3)

convert a string to a long integer

explain_strtoll_or_die(3)
convert a string to a long integer and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

860

explain_strtoll_or_die(3) explain_strtoll_or_die(3)

NAME
explain_strtoll_or_die − convert a string to a long integer and report errors

SYNOPSIS
#include <libexplain/strtoll.h>

long long explain_strtoll_or_die(const char *nptr, char **endptr, int base);
long long explain_strtoll_on_error(const char *nptr, char **endptr, int base))

DESCRIPTION
Theexplain_strtoll_or_die function is used to call thestrtoll(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_strtoll(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_strtoll_on_error function is used to call thestrtoll(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtoll(3) function, but still returns to the caller.

nptr The nptr, exactly as to be passed to thestrtoll(3) system call.

endptr The endptr, exactly as to be passed to thestrtoll(3) system call.

base The base, exactly as to be passed to thestrtoll(3) system call.

RETURN VALUE
The explain_strtoll_or_die function only returns on success, seestrtoll(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_strtoll_on_error function always returns the value return by the wrappedstrtoll(3) system
call.

EXAMPLE
Theexplain_strtoll_or_die function is intended to be used in a fashion similar to the following example:

long long result = explain_strtoll_or_die(nptr, endptr, base);

SEE ALSO
strtoll(3)

convert a string to a long integer

explain_strtoll(3)
explainstrtoll(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

861

explain_strtol_or_die(3) explain_strtol_or_die(3)

NAME
explain_strtol_or_die − convert a string to a long integer and report errors

SYNOPSIS
#include <libexplain/strtol.h>

long explain_strtol_or_die(const char *nptr, char **endptr, int base);
long explain_strtol_on_error(const char *nptr, char **endptr, int base))

DESCRIPTION
Theexplain_strtol_or_die function is used to call thestrtol(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_strtol(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_strtol_on_error function is used to call thestrtol(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtol(3) function, but still returns to the caller.

nptr The nptr, exactly as to be passed to thestrtol(3) system call.

endptr The endptr, exactly as to be passed to thestrtol(3) system call.

base The base, exactly as to be passed to thestrtol(3) system call.

RETURN VALUE
Theexplain_strtol_or_die function only returns on success, seestrtol(3) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_strtol_on_error function always returns the value return by the wrappedstrtol(3) system call.

EXAMPLE
Theexplain_strtol_or_die function is intended to be used in a fashion similar to the following example:

long result = explain_strtol_or_die(nptr, endptr, base);

SEE ALSO
strtol(3) convert a string to a long integer

explain_strtol(3)
explainstrtol(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

862

explain_strtoul(3) explain_strtoul(3)

NAME
explain_strtoul − explain strtoul(3) errors

SYNOPSIS
#include <libexplain/strtoul.h>

const char *explain_strtoul(const char *nptr, char **endptr, int base);
const char *explain_errno_strtoul(int errnum, const char *nptr, char **endptr, int base);
void explain_message_strtoul(char *message, int message_size, const char *nptr, char **endptr, int base);
void explain_message_errno_strtoul(char *message, int message_size, int errnum, const char *nptr, char
**endptr, int base);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrtoul(3) system call.

explain_strtoul
const char *explain_strtoul(const char *nptr, char **endptr, int base);

Theexplain_strtoul function is used to obtain an explanation of an error returned by thestrtoul(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

nptr The original nptr, exactly as passed to thestrtoul(3) system call.

endptr The original endptr, exactly as passed to thestrtoul(3) system call.

base The original base, exactly as passed to thestrtoul(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned long result = strtoul(nptr, endptr, base);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_strtoul(nptr, endptr, base));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoul_or_die(3) function.

explain_errno_strtoul
const char *explain_errno_strtoul(int errnum, const char *nptr, char **endptr, int base);

Theexplain_errno_strtoul function is used to obtain an explanation of an error returned by thestrtoul(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtoul(3) system call.

endptr The original endptr, exactly as passed to thestrtoul(3) system call.

base The original base, exactly as passed to thestrtoul(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

863

explain_strtoul(3) explain_strtoul(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned long result = strtoul(nptr, endptr, base);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strtoul(err, nptr,
endptr, base));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoul_or_die(3) function.

explain_message_strtoul
void explain_message_strtoul(char *message, int message_size, const char *nptr, char **endptr, int base);

The explain_message_strtoulfunction is used to obtain an explanation of an error returned by the
strtoul(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nptr The original nptr, exactly as passed to thestrtoul(3) system call.

endptr The original endptr, exactly as passed to thestrtoul(3) system call.

base The original base, exactly as passed to thestrtoul(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned long result = strtoul(nptr, endptr, base);
if (result < 0)
{

char message[3000];
explain_message_strtoul(message, sizeof(message), nptr,
endptr, base);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoul_or_die(3) function.

explain_message_errno_strtoul
void explain_message_errno_strtoul(char *message, int message_size, int errnum, const char *nptr, char
**endptr, int base);

The explain_message_errno_strtoulfunction is used to obtain an explanation of an error returned by the
strtoul(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

864

explain_strtoul(3) explain_strtoul(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtoul(3) system call.

endptr The original endptr, exactly as passed to thestrtoul(3) system call.

base The original base, exactly as passed to thestrtoul(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned long result = strtoul(nptr, endptr, base);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_strtoul(message, sizeof(message), err,
nptr, endptr, base);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoul_or_die(3) function.

SEE ALSO
strtoul(3)

convert a string to an unsigned long integer

explain_strtoul_or_die(3)
convert a string to an unsigned long integer and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

865

explain_strtoull(3) explain_strtoull(3)

NAME
explain_strtoull − explain strtoull(3) errors

SYNOPSIS
#include <libexplain/strtoull.h>

const char *explain_strtoull(const char *nptr, char **endptr, int base);
const char *explain_errno_strtoull(int errnum, const char *nptr, char **endptr, int base);
void explain_message_strtoull(char *message, int message_size, const char *nptr, char **endptr, int base);
void explain_message_errno_strtoull(char *message, int message_size, int errnum, const char *nptr, char
**endptr, int base);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thestrtoull(3) system call.

explain_strtoull
const char *explain_strtoull(const char *nptr, char **endptr, int base);

Theexplain_strtoull function is used to obtain an explanation of an error returned by thestrtoull(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

nptr The original nptr, exactly as passed to thestrtoull(3) system call.

endptr The original endptr, exactly as passed to thestrtoull(3) system call.

base The original base, exactly as passed to thestrtoull(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned long long result = strtoull(nptr, endptr, base);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_strtoull(nptr, endptr, base));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoull_or_die(3) function.

explain_errno_strtoull
const char *explain_errno_strtoull(int errnum, const char *nptr, char **endptr, int base);

Theexplain_errno_strtoull function is used to obtain an explanation of an error returned by thestrtoull(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtoull(3) system call.

endptr The original endptr, exactly as passed to thestrtoull(3) system call.

base The original base, exactly as passed to thestrtoull(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

866

explain_strtoull(3) explain_strtoull(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned long long result = strtoull(nptr, endptr, base);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_strtoull(err, nptr,
endptr, base));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoull_or_die(3) function.

explain_message_strtoull
void explain_message_strtoull(char *message, int message_size, const char *nptr, char **endptr, int base);

The explain_message_strtoullfunction is used to obtain an explanation of an error returned by the
strtoull(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

nptr The original nptr, exactly as passed to thestrtoull(3) system call.

endptr The original endptr, exactly as passed to thestrtoull(3) system call.

base The original base, exactly as passed to thestrtoull(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned long long result = strtoull(nptr, endptr, base);
if (result < 0)
{

char message[3000];
explain_message_strtoull(message, sizeof(message), nptr,
endptr, base);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoull_or_die(3) function.

explain_message_errno_strtoull
void explain_message_errno_strtoull(char *message, int message_size, int errnum, const char *nptr, char
**endptr, int base);

Theexplain_message_errno_strtoullfunction is used to obtain an explanation of an error returned by the
strtoull(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

867

explain_strtoull(3) explain_strtoull(3)

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

nptr The original nptr, exactly as passed to thestrtoull(3) system call.

endptr The original endptr, exactly as passed to thestrtoull(3) system call.

base The original base, exactly as passed to thestrtoull(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
unsigned long long result = strtoull(nptr, endptr, base);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_strtoull(message, sizeof(message), err,
nptr, endptr, base);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_strtoull_or_die(3) function.

SEE ALSO
strtoull(3)

convert a string to an unsigned long integer

explain_strtoull_or_die(3)
convert a string to an unsigned long integer and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

868

explain_strtoull_or_die(3) explain_strtoull_or_die(3)

NAME
explain_strtoull_or_die − convert string to integer and report errors

SYNOPSIS
#include <libexplain/strtoull.h>

unsigned long long explain_strtoull_or_die(const char *nptr, char **endptr, int base);
unsigned long long explain_strtoull_on_error(const char *nptr, char **endptr, int base))

DESCRIPTION
The explain_strtoull_or_die function is used to call thestrtoull(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtoull(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_strtoull_on_error function is used to call thestrtoull(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_strtoull(3) function, but still returns to the
caller.

nptr The nptr, exactly as to be passed to thestrtoull(3) system call.

endptr The endptr, exactly as to be passed to thestrtoull(3) system call.

base The base, exactly as to be passed to thestrtoull(3) system call.

RETURN VALUE
The explain_strtoull_or_die function only returns on success, seestrtoull(3) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_strtoull_on_error function always returns the value return by the wrappedstrtoull(3) system
call.

EXAMPLE
Theexplain_strtoull_or_die function is intended to be used in a fashion similar to the following example:

unsigned long long result = explain_strtoull_or_die(nptr, endptr, base);

SEE ALSO
strtoull(3)

convert a string to an unsigned long integer

explain_strtoull(3)
explainstrtoull(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

869

explain_strtoul_or_die(3) explain_strtoul_or_die(3)

NAME
explain_strtoul_or_die − convert string to unsigned long and report errors

SYNOPSIS
#include <libexplain/strtoul.h>

unsigned long explain_strtoul_or_die(const char *nptr, char **endptr, int base);
unsigned long explain_strtoul_on_error(const char *nptr, char **endptr, int base))

DESCRIPTION
The explain_strtoul_or_die function is used to call thestrtoul(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtoul(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_strtoul_on_error function is used to call thestrtoul(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_strtoul(3) function, but still returns to the caller.

nptr The nptr, exactly as to be passed to thestrtoul(3) system call.

endptr The endptr, exactly as to be passed to thestrtoul(3) system call.

base The base, exactly as to be passed to thestrtoul(3) system call.

RETURN VALUE
The explain_strtoul_or_die function only returns on success, seestrtoul(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_strtoul_on_error function always returns the value return by the wrappedstrtoul(3) system
call.

EXAMPLE
Theexplain_strtoul_or_die function is intended to be used in a fashion similar to the following example:

unsigned long result = explain_strtoul_or_die(nptr, endptr, base);

SEE ALSO
strtoul(3)

convert a string to an unsigned long integer

explain_strtoul(3)
explainstrtoul(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

870

explain_symlink(3) explain_symlink(3)

NAME
explain_symlink − explain symlink(2) errors

SYNOPSIS
#include <libexplain/symlink.h>
const char *explain_symlink(const char *oldpath, const char *newpath);
const char *explain_errno_symlink(int errnum, const char *oldpath, const char *newpath);
void explain_message_symlink(char *message, int message_size, const char *oldpath, const char
*newpath);
void explain_message_errno_symlink(char *message, int message_size, int errnum, const char *oldpath,
const char *newpath);

DESCRIPTION
These functions may be used to obtain explanations forsymlink(2) errors.

explain_symlink
const char *explain_symlink(const char *oldpath, const char *newpath);

The explain_symlink function is used to obtain an explanation of an error returned by thesymlink(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (symlink(oldpath, rewpath) < 0)
{

fprintf(stderr, ’%s0, explain_symlink(oldpath, newpath));
exit(EXIT_FAILURE);

}

oldpath The original oldpath, exactly as passed to thesymlink(2) system call.

newpath The original newpath, exactly as passed to thesymlink(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_symlink
const char *explain_errno_symlink(int errnum, const char *oldpath, const char * newpath);

The explain_errno_symlink function is used to obtain an explanation of an error returned by thesymlink(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (symlink(oldpath, newpath) < 0)
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_symlink(err, oldpath,

newpath));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

871

explain_symlink(3) explain_symlink(3)

oldpath The original oldpath, exactly as passed to thesymlink(2) system call.

newpath The original newpath, exactly as passed to thesymlink(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_symlink
void explain_message_symlink(char *message, int message_size, const char *oldpath, const char
*newpath);

The explain_message_symlink function is used to obtain an explanation of an error returned by the
symlink(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrno]fP global variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (symlink(oldpath, newpath) < 0)
{

char message[3000];
explain_message_symlink(message, sizeof(message), oldpath,

newpath);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

oldpath The original oldpath, exactly as passed to thesymlink(2) system call.

newpath The original newpath, exactly as passed to thesymlink(2) system call.

explain_message_errno_symlink
void explain_message_errno_symlink(char *message, int message_size, int errnum, const char *oldpath,
const char *newpath);

The explain_message_errno_symlink function is used to obtain an explanation of an error returned by the
symlink(2) system call. The least the message will contain is the value of strerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:

if (symlink(oldpath, newpath) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_symlink(message, sizeof(message), err,

oldpath, newpath);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

872

explain_symlink(3) explain_symlink(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

oldpath The original oldpath, exactly as passed to thesymlink(2) system call.

newpath The original newpath, exactly as passed to thesymlink(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

873

explain_symlink_or_die(3) explain_symlink_or_die(3)

NAME
explain_symlink_or_die − make a new name for a file and report errors

SYNOPSIS
#include <libexplain/symlink.h>

void explain_symlink_or_die(const char *oldpath, const char *newpath);

DESCRIPTION
Theexplain_symlink_or_die function is used to call thesymlink(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_symlink(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_symlink_or_die(oldpath, newpath);

oldpath The oldpath, exactly as to be passed to thesymlink(2) system call.

newpath The newpath, exactly as to be passed to thesymlink(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
symlink(2)

make a new name for a file

explain_symlink(3)
explainsymlink(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

874

explain_system(3) explain_system(3)

NAME
explain_system − explain system(3) errors

SYNOPSIS
#include <libexplain/system.h>

const char *explain_system(const char *command);
const char *explain_errno_system(int errnum, const char *command);
void explain_message_system(char *message, int message_size, const char *command);
void explain_message_errno_system(char *message, int message_size, int errnum, const char *command);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thesystem(3) system call.

explain_system
const char *explain_system(const char *command);

Theexplain_systemfunction is used to obtain an explanation of an error returned by thesystem(3) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (system(command) < 0)
{

fprintf(stderr, "%s\n", explain_system(command));
exit(EXIT_FAILURE);

}

command
The original command, exactly as passed to thesystem(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_system
const char *explain_errno_system(int errnum, const char *command);

Theexplain_errno_systemfunction is used to obtain an explanation of an error returned by thesystem(3)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (system(command) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_system(err, command));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

command
The original command, exactly as passed to thesystem(3) system call.

875

explain_system(3) explain_system(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_system
void explain_message_system(char *message, int message_size, const char *command);

The explain_message_systemfunction may be used to obtain an explanation of an error returned by the
system(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (system(command) < 0)
{

char message[3000];
explain_message_system(message, sizeof(message), command);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

command
The original command, exactly as passed to thesystem(3) system call.

explain_message_errno_system
void explain_message_errno_system(char *message, int message_size, int errnum, const char *command);

Theexplain_message_errno_systemfunction may be used to obtain an explanation of an error returned by
the system(3) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (system(command) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_system(message, sizeof(message), err, command);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

876

explain_system(3) explain_system(3)

command
The original command, exactly as passed to thesystem(3) system call.

SEE ALSO
system(3)

execute a shell command

explain_system_or_die(3)
execute a shell command and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

877

explain_system_or_die(3) explain_system_or_die(3)

NAME
explain_system_or_die − execute a shell command and report errors

SYNOPSIS
#include <libexplain/system.h>

void explain_system_or_die(const char *command);
void explain_system_success_or_die(const char *command);
int explain_system_success(const char *command);

DESCRIPTION
These functions may be used to execute commands via thesystem(3) function, and report the results.

explain_system_or_die
void explain_system_or_die(const char *command);

The explain_system_or_diefunction is used to call thesystem(3) system call.On failure an explanation
will be printed tostderr, obtained fromexplain_system(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
int status = explain_system_or_die(command);

command
The command, exactly as to be passed to thesystem(3) system call.

Returns: This function only returns on success, seesystem(3) for more information. On failure, prints an
explanation and exits.

explain_system_success_or_die
void explain_system_success_or_die(const char *command);

The explain_system_success_or_diefunction is used to call thesystem(3) system call. On failure,
including any exit status other than EXIT_SUCCESS, an explanation will be printed tostderr, obtained
from explain_system(3), and then the process terminates by callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_system_success_or_die(command);

command
The command, exactly as to be passed to thesystem(3) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

explain_system_success
int explain_system_success(const char *command);

The explain_system_successfunction is used to call thesystem(3) system call. On failure, including any
exit status other than EXIT_SUCCESS, an explanation will be printed tostderr, obtained from
explain_system(3). However, the priniting of an error message doesnot also causeexit(2) to be called.

This function is intended to be used in a fashion similar to the following example:
int status = explain_system_success(command);

command
The command, exactly as to be passed to thesystem(3) system call.

Returns: the value returned by thesystem(3) system call.In all cases other than EXIT_SUCCESS, an error
message will also have been printed to stderr.

SEE ALSO
system(3)

execute a shell command

878

explain_system_or_die(3) explain_system_or_die(3)

explain_system(3)
explainsystem(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

879

explain_tcdrain(3) explain_tcdrain(3)

NAME
explain_tcdrain − explaintcdrain(3) errors

SYNOPSIS
#include <libexplain/tcdrain.h>

const char *explain_tcdrain(int fildes);
const char *explain_errno_tcdrain(int errnum, int fildes);
void explain_message_tcdrain(char *message, int message_size, int fildes);
void explain_message_errno_tcdrain(char *message, int message_size, int errnum, int fildes);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetcdrain(3) system call.

explain_tcdrain
const char *explain_tcdrain(int fildes);

Theexplain_tcdrain function is used to obtain an explanation of an error returned by thetcdrain(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thetcdrain(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcdrain(fildes) < 0)
{

fprintf(stderr, "%s\n", explain_tcdrain(fildes));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcdrain_or_die(3) function.

explain_errno_tcdrain
const char *explain_errno_tcdrain(int errnum, int fildes);

Theexplain_errno_tcdrain function is used to obtain an explanation of an error returned by thetcdrain(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcdrain(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcdrain(fildes) < 0)
{

880

explain_tcdrain(3) explain_tcdrain(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_tcdrain(err, fildes));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcdrain_or_die(3) function.

explain_message_tcdrain
void explain_message_tcdrain(char *message, int message_size, int fildes);

The explain_message_tcdrainfunction is used to obtain an explanation of an error returned by the
tcdrain(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thetcdrain(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcdrain(fildes) < 0)
{

char message[3000];
explain_message_tcdrain(message, sizeof(message), fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcdrain_or_die(3) function.

explain_message_errno_tcdrain
void explain_message_errno_tcdrain(char *message, int message_size, int errnum, int fildes);

Theexplain_message_errno_tcdrainfunction is used to obtain an explanation of an error returned by the
tcdrain(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcdrain(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcdrain(fildes) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_tcdrain(message, sizeof(message), err,
fildes);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

881

explain_tcdrain(3) explain_tcdrain(3)

The above code example is available pre-packaged as theexplain_tcdrain_or_die(3) function.

SEE ALSO
tcdrain(3)

Executetcdrain(3)

explain_tcdrain_or_die(3)
Executetcdrain(3) and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller,,,

882

explain_tcdrain_or_die(3) explain_tcdrain_or_die(3)

NAME
explain_tcdrain_or_die − Executetcdrain(3) and report errors

SYNOPSIS
#include <libexplain/tcdrain.h>

void explain_tcdrain_or_die(int fildes);
int explain_tcdrain_on_error(int fildes);

DESCRIPTION
The explain_tcdrain_or_die function is used to call thetcdrain(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_tcdrain(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_tcdrain_on_error function is used to call thetcdrain(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tcdrain(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thetcdrain(3) system call.

RETURN VALUE
The explain_tcdrain_or_die function only returns on success, seetcdrain(3) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_tcdrain_on_error function always returns the value return by the wrappedtcdrain(3) system
call.

EXAMPLE
Theexplain_tcdrain_or_die function is intended to be used in a fashion similar to the following example:

explain_tcdrain_or_die(fildes);

SEE ALSO
tcdrain(3)

Executetcdrain(3)

explain_tcdrain(3)
explain tcdrain(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller,,,

883

explain_tcflow(3) explain_tcflow(3)

NAME
explain_tcflow − explain tcflow(3) errors

SYNOPSIS
#include <libexplain/tcflow.h>

const char *explain_tcflow(int fildes, int action);
const char *explain_errno_tcflow(int errnum, int fildes, int action);
void explain_message_tcflow(char *message, int message_size, int fildes, int action);
void explain_message_errno_tcflow(char *message, int message_size, int errnum, int fildes, int action);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetcflow(3) system call.

explain_tcflow
const char *explain_tcflow(int fildes, int action);

The explain_tcflow function is used to obtain an explanation of an error returned by thetcflow(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thetcflow(3) system call.

action The original action, exactly as passed to thetcflow(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcflow(fildes, action) < 0)
{

fprintf(stderr, "%s\n", explain_tcflow(fildes, action));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcflow_or_die(3) function.

explain_errno_tcflow
const char *explain_errno_tcflow(int errnum, int fildes, int action);

The explain_errno_tcflow function is used to obtain an explanation of an error returned by thetcflow(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcflow(3) system call.

action The original action, exactly as passed to thetcflow(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

884

explain_tcflow(3) explain_tcflow(3)

if (tcflow(fildes, action) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_tcflow(err, fildes,
action));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcflow_or_die(3) function.

explain_message_tcflow
void explain_message_tcflow(char *message, int message_size, int fildes, int action);

Theexplain_message_tcflowfunction is used to obtain an explanation of an error returned by thetcflow(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thetcflow(3) system call.

action The original action, exactly as passed to thetcflow(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcflow(fildes, action) < 0)
{

char message[3000];
explain_message_tcflow(message, sizeof(message), fildes,
action);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcflow_or_die(3) function.

explain_message_errno_tcflow
void explain_message_errno_tcflow(char *message, int message_size, int errnum, int fildes, int action);

The explain_message_errno_tcflowfunction is used to obtain an explanation of an error returned by the
tcflow(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcflow(3) system call.

action The original action, exactly as passed to thetcflow(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcflow(fildes, action) < 0)
{

885

explain_tcflow(3) explain_tcflow(3)

int err = errno;
char message[3000];

explain_message_errno_tcflow(message, sizeof(message), err,
fildes, action);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcflow_or_die(3) function.

SEE ALSO
tcflow(3)

terminal flow control

explain_tcflow_or_die(3)
terminal flow control and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

886

explain_tcflow_or_die(3) explain_tcflow_or_die(3)

NAME
explain_tcflow_or_die − terminal flow control and report errors

SYNOPSIS
#include <libexplain/tcflow.h>

void explain_tcflow_or_die(int fildes, int action);
int explain_tcflow_on_error(int fildes, int action);

DESCRIPTION
Theexplain_tcflow_or_die function is used to call thetcflow(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_tcflow(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_tcflow_on_error function is used to call thetcflow(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_tcflow(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thetcflow(3) system call.

action The action, exactly as to be passed to thetcflow(3) system call.

RETURN VALUE
The explain_tcflow_or_die function only returns on success, seetcflow(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_tcflow_on_error function always returns the value return by the wrappedtcflow(3) system
call.

EXAMPLE
Theexplain_tcflow_or_diefunction is intended to be used in a fashion similar to the following example:

explain_tcflow_or_die(fildes, action);

SEE ALSO
tcflow(3)

terminal flow control

explain_tcflow(3)
explain tcflow(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

887

explain_tcflush(3) explain_tcflush(3)

NAME
explain_tcflush − explaintcflush(3) errors

SYNOPSIS
#include <libexplain/tcflush.h>

const char *explain_tcflush(int fildes, int selector);
const char *explain_errno_tcflush(int errnum, int fildes, int selector);
void explain_message_tcflush(char *message, int message_size, int fildes, int selector);
void explain_message_errno_tcflush(char *message, int message_size, int errnum, int fildes, int selector);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetcflush(3) system call.

explain_tcflush
const char *explain_tcflush(int fildes, int selector);

Theexplain_tcflush function is used to obtain an explanation of an error returned by thetcflush(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thetcflush(3) system call.

selector The original selector, exactly as passed to thetcflush(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcflush(fildes, selector) < 0)
{

fprintf(stderr, "%s\n", explain_tcflush(fildes, selector));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcflush_or_die(3) function.

explain_errno_tcflush
const char *explain_errno_tcflush(int errnum, int fildes, int selector);

Theexplain_errno_tcflush function is used to obtain an explanation of an error returned by thetcflush(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcflush(3) system call.

selector The original selector, exactly as passed to thetcflush(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

888

explain_tcflush(3) explain_tcflush(3)

if (tcflush(fildes, selector) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_tcflush(err, fildes,
selector));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcflush_or_die(3) function.

explain_message_tcflush
void explain_message_tcflush(char *message, int message_size, int fildes, int selector);

The explain_message_tcflushfunction is used to obtain an explanation of an error returned by the
tcflush(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thetcflush(3) system call.

selector The original selector, exactly as passed to thetcflush(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcflush(fildes, selector) < 0)
{

char message[3000];
explain_message_tcflush(message, sizeof(message), fildes,
selector);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcflush_or_die(3) function.

explain_message_errno_tcflush
void explain_message_errno_tcflush(char *message, int message_size, int errnum, int fildes, int selector);

Theexplain_message_errno_tcflushfunction is used to obtain an explanation of an error returned by the
tcflush(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcflush(3) system call.

selector The original selector, exactly as passed to thetcflush(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcflush(fildes, selector) < 0)
{

889

explain_tcflush(3) explain_tcflush(3)

int err = errno;
char message[3000];

explain_message_errno_tcflush(message, sizeof(message), err,
fildes, selector);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcflush_or_die(3) function.

SEE ALSO
tcflush(3)

discard terminal data

explain_tcflush_or_die(3)
discard terminal data and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

890

explain_tcflush_or_die(3) explain_tcflush_or_die(3)

NAME
explain_tcflush_or_die − discard terminal data and report errors

SYNOPSIS
#include <libexplain/tcflush.h>

void explain_tcflush_or_die(int fildes, int selector);
int explain_tcflush_on_error(int fildes, int selector);

DESCRIPTION
The explain_tcflush_or_die function is used to call thetcflush(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_tcflush(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_tcflush_on_error function is used to call thetcflush(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_tcflush(3) function, but still returns to the caller.

fildes The fildes, exactly as to be passed to thetcflush(3) system call.

selector The selector, exactly as to be passed to thetcflush(3) system call.

RETURN VALUE
The explain_tcflush_or_die function only returns on success, seetcflush(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_tcflush_on_error function always returns the value return by the wrappedtcflush(3) system
call.

EXAMPLE
Theexplain_tcflush_or_diefunction is intended to be used in a fashion similar to the following example:

explain_tcflush_or_die(fildes, selector);

SEE ALSO
tcflush(3)

discard terminal data

explain_tcflush(3)
explain tcflush(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

891

explain_tcgetattr(3) explain_tcgetattr(3)

NAME
explain_tcgetattr − explaintcgetattr(3) errors

SYNOPSIS
#include <libexplain/tcgetattr.h>

const char *explain_tcgetattr(int fildes, struct termios *data);
const char *explain_errno_tcgetattr(int errnum, int fildes, struct termios *data);
void explain_message_tcgetattr(char *message, int message_size, int fildes, struct termios *data);
void explain_message_errno_tcgetattr(char *message, int message_size, int errnum, int fildes, struct
termios *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetcgetattr(3) system call.

explain_tcgetattr
const char *explain_tcgetattr(int fildes, struct termios *data);

The explain_tcgetattr function is used to obtain an explanation of an error returned by thetcgetattr(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thetcgetattr(3) system call.

data The original data, exactly as passed to thetcgetattr(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcgetattr(fildes, data) < 0)
{

fprintf(stderr, "%s\n", explain_tcgetattr(fildes, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcgetattr_or_die(3) function.

explain_errno_tcgetattr
const char *explain_errno_tcgetattr(int errnum, int fildes, struct termios *data);

The explain_errno_tcgetattr function is used to obtain an explanation of an error returned by the
tcgetattr(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcgetattr(3) system call.

data The original data, exactly as passed to thetcgetattr(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

892

explain_tcgetattr(3) explain_tcgetattr(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (tcgetattr(fildes, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_tcgetattr(err, fildes,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcgetattr_or_die(3) function.

explain_message_tcgetattr
void explain_message_tcgetattr(char *message, int message_size, int fildes, struct termios *data);

The explain_message_tcgetattrfunction is used to obtain an explanation of an error returned by the
tcgetattr(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thetcgetattr(3) system call.

data The original data, exactly as passed to thetcgetattr(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcgetattr(fildes, data) < 0)
{

char message[3000];
explain_message_tcgetattr(message, sizeof(message), fildes,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcgetattr_or_die(3) function.

explain_message_errno_tcgetattr
void explain_message_errno_tcgetattr(char *message, int message_size, int errnum, int fildes, struct
termios *data);

Theexplain_message_errno_tcgetattrfunction is used to obtain an explanation of an error returned by the
tcgetattr(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcgetattr(3) system call.

data The original data, exactly as passed to thetcgetattr(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:

893

explain_tcgetattr(3) explain_tcgetattr(3)

if (tcgetattr(fildes, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_tcgetattr(message, sizeof(message), err,
fildes, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcgetattr_or_die(3) function.

SEE ALSO
tcgetattr(3)

get terminal parameters

explain_tcgetattr_or_die(3)
get terminal parameters and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

894

explain_tcgetattr_or_die(3) explain_tcgetattr_or_die(3)

NAME
explain_tcgetattr_or_die − get terminal parameters and report errors

SYNOPSIS
#include <libexplain/tcgetattr.h>

void explain_tcgetattr_or_die(int fildes, struct termios *data);
int explain_tcgetattr_on_error(int fildes, struct termios *data);

DESCRIPTION
The explain_tcgetattr_or_die function is used to call thetcgetattr(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tcgetattr(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_tcgetattr_on_error function is used to call thetcgetattr(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tcgetattr(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thetcgetattr(3) system call.

data The data, exactly as to be passed to thetcgetattr(3) system call.

RETURN VALUE
The explain_tcgetattr_or_die function only returns on success, seetcgetattr(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_tcgetattr_on_error function always returns the value return by the wrappedtcgetattr(3)
system call.

EXAMPLE
The explain_tcgetattr_or_die function is intended to be used in a fashion similar to the following
example:

explain_tcgetattr_or_die(fildes, data);

SEE ALSO
tcgetattr(3)

get terminal parameters

explain_tcgetattr(3)
explain tcgetattr(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

895

explain_tcsendbreak(3) explain_tcsendbreak(3)

NAME
explain_tcsendbreak − explaintcsendbreak(3) errors

SYNOPSIS
#include <libexplain/tcsendbreak.h>

const char *explain_tcsendbreak(int fildes, int duration);
const char *explain_errno_tcsendbreak(int errnum, int fildes, int duration);
void explain_message_tcsendbreak(char *message, int message_size, int fildes, int duration);
void explain_message_errno_tcsendbreak(char *message, int message_size, int errnum, int fildes, int
duration);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetcsendbreak(3) system call.

explain_tcsendbreak
const char *explain_tcsendbreak(int fildes, int duration);

The explain_tcsendbreak function is used to obtain an explanation of an error returned by the
tcsendbreak(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thetcsendbreak(3) system call.

duration The original duration, exactly as passed to thetcsendbreak(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcsendbreak(fildes, duration) < 0)
{

fprintf(stderr, "%s\n", explain_tcsendbreak(fildes,
duration));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcsendbreak_or_die(3) function.

explain_errno_tcsendbreak
const char *explain_errno_tcsendbreak(int errnum, int fildes, int duration);

The explain_errno_tcsendbreak function is used to obtain an explanation of an error returned by the
tcsendbreak(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcsendbreak(3) system call.

duration The original duration, exactly as passed to thetcsendbreak(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

896

explain_tcsendbreak(3) explain_tcsendbreak(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcsendbreak(fildes, duration) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_tcsendbreak(err, fildes,
duration));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcsendbreak_or_die(3) function.

explain_message_tcsendbreak
void explain_message_tcsendbreak(char *message, int message_size, int fildes, int duration);

The explain_message_tcsendbreakfunction is used to obtain an explanation of an error returned by the
tcsendbreak(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thetcsendbreak(3) system call.

duration The original duration, exactly as passed to thetcsendbreak(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcsendbreak(fildes, duration) < 0)
{

char message[3000];
explain_message_tcsendbreak(message, sizeof(message), fildes,
duration);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcsendbreak_or_die(3) function.

explain_message_errno_tcsendbreak
void explain_message_errno_tcsendbreak(char *message, int message_size, int errnum, int fildes, int
duration);

The explain_message_errno_tcsendbreakfunction is used to obtain an explanation of an error returned
by the tcsendbreak(3) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcsendbreak(3) system call.

897

explain_tcsendbreak(3) explain_tcsendbreak(3)

duration The original duration, exactly as passed to thetcsendbreak(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcsendbreak(fildes, duration) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_tcsendbreak(message, sizeof(message),
err, fildes, duration);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcsendbreak_or_die(3) function.

SEE ALSO
tcsendbreak(3)

send terminal line break

explain_tcsendbreak_or_die(3)
send terminal line break and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

898

explain_tcsendbreak_or_die(3) explain_tcsendbreak_or_die(3)

NAME
explain_tcsendbreak_or_die − send terminal line break and report errors

SYNOPSIS
#include <libexplain/tcsendbreak.h>

void explain_tcsendbreak_or_die(int fildes, int duration);
int explain_tcsendbreak_on_error(int fildes, int duration);

DESCRIPTION
The explain_tcsendbreak_or_diefunction is used to call thetcsendbreak(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tcsendbreak(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_tcsendbreak_on_errorfunction is used to call thetcsendbreak(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tcsendbreak(3) function, but still returns to
the caller.

fildes The fildes, exactly as to be passed to thetcsendbreak(3) system call.

duration The duration, exactly as to be passed to thetcsendbreak(3) system call.

RETURN VALUE
The explain_tcsendbreak_or_die function only returns on success, seetcsendbreak(3) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_tcsendbreak_on_error function always returns the value return by the wrapped
tcsendbreak(3) system call.

EXAMPLE
The explain_tcsendbreak_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_tcsendbreak_or_die(fildes, duration);

SEE ALSO
tcsendbreak(3)

send terminal line break

explain_tcsendbreak(3)
explain tcsendbreak(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

899

explain_tcsetattr(3) explain_tcsetattr(3)

NAME
explain_tcsetattr − explaintcsetattr(3) errors

SYNOPSIS
#include <libexplain/tcsetattr.h>

const char *explain_tcsetattr(int fildes, int options, const struct termios *data);
const char *explain_errno_tcsetattr(int errnum, int fildes, int options, const struct termios *data);
void explain_message_tcsetattr(char *message, int message_size, int fildes, int options, const struct termios
*data);
void explain_message_errno_tcsetattr(char *message, int message_size, int errnum, int fildes, int options,
const struct termios *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetcsetattr(3) system call.

explain_tcsetattr
const char *explain_tcsetattr(int fildes, int options, const struct termios *data);

The explain_tcsetattr function is used to obtain an explanation of an error returned by thetcsetattr(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to thetcsetattr(3) system call.

options The original options, exactly as passed to thetcsetattr(3) system call.

data The original data, exactly as passed to thetcsetattr(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcsetattr(fildes, options, data) < 0)
{

fprintf(stderr, "%s\n", explain_tcsetattr(fildes, options,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcsetattr_or_die(3) function.

explain_errno_tcsetattr
const char *explain_errno_tcsetattr(int errnum, int fildes, int options, const struct termios *data);

The explain_errno_tcsetattr function is used to obtain an explanation of an error returned by the
tcsetattr(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcsetattr(3) system call.

options The original options, exactly as passed to thetcsetattr(3) system call.

data The original data, exactly as passed to thetcsetattr(3) system call.

900

explain_tcsetattr(3) explain_tcsetattr(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcsetattr(fildes, options, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_tcsetattr(err, fildes,
options, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcsetattr_or_die(3) function.

explain_message_tcsetattr
void explain_message_tcsetattr(char *message, int message_size, int fildes, int options, const struct termios
*data);

The explain_message_tcsetattrfunction is used to obtain an explanation of an error returned by the
tcsetattr(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to thetcsetattr(3) system call.

options The original options, exactly as passed to thetcsetattr(3) system call.

data The original data, exactly as passed to thetcsetattr(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcsetattr(fildes, options, data) < 0)
{

char message[3000];
explain_message_tcsetattr(message, sizeof(message), fildes,
options, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcsetattr_or_die(3) function.

explain_message_errno_tcsetattr
void explain_message_errno_tcsetattr(char *message, int message_size, int errnum, int fildes, int options,
const struct termios *data);

Theexplain_message_errno_tcsetattrfunction is used to obtain an explanation of an error returned by the
tcsetattr(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

901

explain_tcsetattr(3) explain_tcsetattr(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to thetcsetattr(3) system call.

options The original options, exactly as passed to thetcsetattr(3) system call.

data The original data, exactly as passed to thetcsetattr(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (tcsetattr(fildes, options, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_tcsetattr(message, sizeof(message), err,
fildes, options, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tcsetattr_or_die(3) function.

SEE ALSO
tcsetattr(3)

set terminal attributes

explain_tcsetattr_or_die(3)
set terminal attributes and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

902

explain_tcsetattr_or_die(3) explain_tcsetattr_or_die(3)

NAME
explain_tcsetattr_or_die − set terminal attributes and report errors

SYNOPSIS
#include <libexplain/tcsetattr.h>

void explain_tcsetattr_or_die(int fildes, int options, const struct termios *data);
int explain_tcsetattr_on_error(int fildes, int options, const struct termios *data);

DESCRIPTION
Theexplain_tcsetattr_or_diefunction is used to call thetcsetattr(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_tcsetattr(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_tcsetattr_on_error function is used to call thetcsetattr(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tcsetattr(3) function, but still returns to the
caller.

fildes The fildes, exactly as to be passed to thetcsetattr(3) system call.

options The options, exactly as to be passed to thetcsetattr(3) system call.

data The data, exactly as to be passed to thetcsetattr(3) system call.

RETURN VALUE
The explain_tcsetattr_or_die function only returns on success, seetcsetattr(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_tcsetattr_on_error function always returns the value return by the wrappedtcsetattr(3)
system call.

EXAMPLE
Theexplain_tcsetattr_or_diefunction is intended to be used in a fashion similar to the following example:

explain_tcsetattr_or_die(fildes, options, data);

SEE ALSO
tcsetattr(3)

set terminal attributes

explain_tcsetattr(3)
explain tcsetattr(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

903

explain_telldir(3) explain_telldir(3)

NAME
explain_telldir − explain telldir(3) errors

SYNOPSIS
#include <libexplain/telldir.h>

const char *explain_telldir(DIR *dir);
const char *explain_errno_telldir(int errnum, DIR *dir);
void explain_message_telldir(char *message, int message_size, DIR *dir);
void explain_message_errno_telldir(char *message, int message_size, int errnum, DIR *dir);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetelldir(3) system call.

explain_telldir
const char *explain_telldir(DIR *dir);

The explain_telldir function is used to obtain an explanation of an error returned by thetelldir(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

dir The original dir, exactly as passed to thetelldir(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = telldir(dir);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_telldir(dir));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_telldir_or_die(3) function.

explain_errno_telldir
const char *explain_errno_telldir(int errnum, DIR *dir);

The explain_errno_telldir function is used to obtain an explanation of an error returned by thetelldir(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dir The original dir, exactly as passed to thetelldir(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = telldir(dir);

904

explain_telldir(3) explain_telldir(3)

if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_telldir(err, dir));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_telldir_or_die(3) function.

explain_message_telldir
void explain_message_telldir(char *message, int message_size, DIR *dir);

Theexplain_message_telldirfunction is used to obtain an explanation of an error returned by thetelldir(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

dir The original dir, exactly as passed to thetelldir(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = telldir(dir);
if (result < 0)
{

char message[3000];
explain_message_telldir(message, sizeof(message), dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_telldir_or_die(3) function.

explain_message_errno_telldir
void explain_message_errno_telldir(char *message, int message_size, int errnum, DIR *dir);

The explain_message_errno_telldirfunction is used to obtain an explanation of an error returned by the
telldir(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dir The original dir, exactly as passed to thetelldir(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
off_t result = telldir(dir);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_telldir(message, sizeof(message), err,

905

explain_telldir(3) explain_telldir(3)

dir);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_telldir_or_die(3) function.

SEE ALSO
telldir(3)

return current location in directory stream

explain_telldir_or_die(3)
return current location in directory stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

906

explain_telldir_or_die(3) explain_telldir_or_die(3)

NAME
explain_telldir_or_die − current location in directory and report errors

SYNOPSIS
#include <libexplain/telldir.h>

off_t explain_telldir_or_die(DIR *dir);
off_t explain_telldir_on_error(DIR *dir);

DESCRIPTION
Theexplain_telldir_or_die function is used to call thetelldir(3) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_telldir(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_telldir_on_error function is used to call thetelldir(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_telldir(3) function, but still returns to the caller.

dir The dir, exactly as to be passed to thetelldir(3) system call.

RETURN VALUE
The explain_telldir_or_die function only returns on success, seetelldir(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_telldir_on_error function always returns the value return by the wrappedtelldir(3) system
call.

EXAMPLE
Theexplain_telldir_or_die function is intended to be used in a fashion similar to the following example:

off_t result = explain_telldir_or_die(dir);

SEE ALSO
telldir(3)

return current location in directory stream

explain_telldir(3)
explain telldir(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

907

explain_tempnam(3) explain_tempnam(3)

NAME
explain_tempnam − explaintempnam(3) errors

SYNOPSIS
#include <libexplain/tempnam.h>

const char *explain_tempnam(const char *dir, const char *prefix);
const char *explain_errno_tempnam(int errnum, const char *dir, const char *prefix);
void explain_message_tempnam(char *message, int message_size, const char *dir, const char *prefix);
void explain_message_errno_tempnam(char *message, int message_size, int errnum, const char *dir, const
char *prefix);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetempnam(3) system call.

explain_tempnam
const char *explain_tempnam(const char *dir, const char *prefix);

The explain_tempnam function is used to obtain an explanation of an error returned by thetempnam(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

dir The original dir, exactly as passed to thetempnam(3) system call.

prefix The original prefix, exactly as passed to thetempnam(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = tempnam(dir, prefix);
if (!result)
{

fprintf(stderr, "%s\n", explain_tempnam(dir, prefix));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tempnam_or_die(3) function.

explain_errno_tempnam
const char *explain_errno_tempnam(int errnum, const char *dir, const char *prefix);

The explain_errno_tempnam function is used to obtain an explanation of an error returned by the
tempnam(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dir The original dir, exactly as passed to thetempnam(3) system call.

prefix The original prefix, exactly as passed to thetempnam(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other

908

explain_tempnam(3) explain_tempnam(3)

functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = tempnam(dir, prefix);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_tempnam(err, dir,
prefix));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tempnam_or_die(3) function.

explain_message_tempnam
void explain_message_tempnam(char *message, int message_size, const char *dir, const char *prefix);

The explain_message_tempnamfunction is used to obtain an explanation of an error returned by the
tempnam(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

dir The original dir, exactly as passed to thetempnam(3) system call.

prefix The original prefix, exactly as passed to thetempnam(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = tempnam(dir, prefix);
if (!result)
{

char message[3000];
explain_message_tempnam(message, sizeof(message), dir,
prefix);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tempnam_or_die(3) function.

explain_message_errno_tempnam
void explain_message_errno_tempnam(char *message, int message_size, int errnum, const char *dir, const
char *prefix);

The explain_message_errno_tempnamfunction is used to obtain an explanation of an error returned by
the tempnam(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

909

explain_tempnam(3) explain_tempnam(3)

dir The original dir, exactly as passed to thetempnam(3) system call.

prefix The original prefix, exactly as passed to thetempnam(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = tempnam(dir, prefix);
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_tempnam(message, sizeof(message), err,
dir, prefix);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tempnam_or_die(3) function.

SEE ALSO
tempnam(3)

create a name for a temporary file

explain_tempnam_or_die(3)
create a name for a temporary file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

910

explain_tempnam_or_die(3) explain_tempnam_or_die(3)

NAME
explain_tempnam_or_die − create a name for a temporary file and report errors

SYNOPSIS
#include <libexplain/tempnam.h>

char *explain_tempnam_or_die(const char *dir, const char *prefix);
char *explain_tempnam_on_error(const char *dir, const char *prefix);

DESCRIPTION
The explain_tempnam_or_die function is used to call thetempnam(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tempnam(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_tempnam_on_error function is used to call thetempnam(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tempnam(3) function, but still returns to the
caller.

dir The dir, exactly as to be passed to thetempnam(3) system call.

prefix The prefix, exactly as to be passed to thetempnam(3) system call.

RETURN VALUE
Theexplain_tempnam_or_diefunction only returns on success, seetempnam(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_tempnam_on_error function always returns the value return by the wrappedtempnam(3)
system call.

EXAMPLE
The explain_tempnam_or_die function is intended to be used in a fashion similar to the following
example:

char *result = explain_tempnam_or_die(dir, prefix);

SEE ALSO
tempnam(3)

create a name for a temporary file

explain_tempnam(3)
explain tempnam(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

911

explain_time(3) explain_time(3)

NAME
explain_time − explain time(2) errors

SYNOPSIS
#include <libexplain/time.h>

const char *explain_time(time_t *t);
const char *explain_errno_time(int errnum, time_t *t);
void explain_message_time(char *message, int message_size, time_t *t);
void explain_message_errno_time(char *message, int message_size, int errnum, time_t *t);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetime(2) system call.

explain_time
const char *explain_time(time_t *t);

Theexplain_time function is used to obtain an explanation of an error returned by thetime(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

t The original t, exactly as passed to thetime(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
time_t result = time(t);
if (result == (time_t)−1)
{

fprintf(stderr, "%s\n", explain_time(t));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_time_or_die(3) function.

explain_errno_time
const char *explain_errno_time(int errnum, time_t *t);

The explain_errno_time function is used to obtain an explanation of an error returned by thetime(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

t The original t, exactly as passed to thetime(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
time_t result = time(t);

912

explain_time(3) explain_time(3)

if (result == (time_t)−1)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_time(err, t));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_time_or_die(3) function.

explain_message_time
void explain_message_time(char *message, int message_size, time_t *t);

The explain_message_timefunction is used to obtain an explanation of an error returned by thetime(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

t The original t, exactly as passed to thetime(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
time_t result = time(t);
if (result == (time_t)−1)
{

char message[3000];
explain_message_time(message, sizeof(message), t);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_time_or_die(3) function.

explain_message_errno_time
void explain_message_errno_time(char *message, int message_size, int errnum, time_t *t);

The explain_message_errno_timefunction is used to obtain an explanation of an error returned by the
time(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

t The original t, exactly as passed to thetime(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
time_t result = time(t);
if (result == (time_t)−1)
{

int err = errno;
char message[3000];

explain_message_errno_time(message, sizeof(message), err, t);

913

explain_time(3) explain_time(3)

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_time_or_die(3) function.

SEE ALSO
time(2) get time in seconds

explain_time_or_die(3)
get time in seconds and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

914

explain_time_or_die(3) explain_time_or_die(3)

NAME
explain_time_or_die − get time in seconds and report errors

SYNOPSIS
#include <libexplain/time.h>

time_t explain_time_or_die(time_t *t);
time_t explain_time_on_error(time_t *t);

DESCRIPTION
Theexplain_time_or_diefunction is used to call thetime(2) system call. On failure an explanation will be
printed tostderr, obtained from theexplain_time(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_time_on_error function is used to call thetime(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_time(3) function, but still returns to the caller.

t The t, exactly as to be passed to thetime(2) system call.

RETURN VALUE
The explain_time_or_die function only returns on success, seetime(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_time_on_error function always returns the value return by the wrappedtime(2) system call.

EXAMPLE
Theexplain_time_or_diefunction is intended to be used in a fashion similar to the following example:

time_t result = explain_time_or_die(t);

SEE ALSO
time(2) get time in seconds

explain_time(3)
explain time(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

915

explain_timerfd_create(3) explain_timerfd_create(3)

NAME
explain_timerfd_create − explain timerfd_create(2) errors

SYNOPSIS
#include <libexplain/timerfd_create.h>

const char *explain_timerfd_create(int clockid, int flags);
const char *explain_errno_timerfd_create(int errnum, int clockid, int flags);
void explain_message_timerfd_create(char *message, int message_size, int clockid, int flags);
void explain_message_errno_timerfd_create(char *message, int message_size, int errnum, int clockid, int
flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetimerfd_create(2) system
call.

explain_timerfd_create
const char *explain_timerfd_create(int clockid, int flags);

The explain_timerfd_create function is used to obtain an explanation of an error returned by the
timerfd_create(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

clockid The original clockid, exactly as passed to thetimerfd_create(2) system call.

flags The original flags, exactly as passed to thetimerfd_create(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = timerfd_create(clockid, flags);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_timerfd_create(clockid,
flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_timerfd_create_or_die(3) function.

explain_errno_timerfd_create
const char *explain_errno_timerfd_create(int errnum, int clockid, int flags);

The explain_errno_timerfd_create function is used to obtain an explanation of an error returned by the
timerfd_create(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

clockid The original clockid, exactly as passed to thetimerfd_create(2) system call.

flags The original flags, exactly as passed to thetimerfd_create(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

916

explain_timerfd_create(3) explain_timerfd_create(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
int result = timerfd_create(clockid, flags);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_timerfd_create(err,
clockid, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_timerfd_create_or_die(3) function.

explain_message_timerfd_create
void explain_message_timerfd_create(char *message, int message_size, int clockid, int flags);

Theexplain_message_timerfd_createfunction is used to obtain an explanation of an error returned by the
timerfd_create(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

clockid The original clockid, exactly as passed to thetimerfd_create(2) system call.

flags The original flags, exactly as passed to thetimerfd_create(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = timerfd_create(clockid, flags);
if (result < 0)
{

char message[3000];
explain_message_timerfd_create(message, sizeof(message),
clockid, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_timerfd_create_or_die(3) function.

explain_message_errno_timerfd_create
void explain_message_errno_timerfd_create(char *message, int message_size, int errnum, int clockid, int
flags);

Theexplain_message_errno_timerfd_createfunction is used to obtain an explanation of an error returned
by the timerfd_create(2) system call. The least the message will contain is the value of
strerror(errno) , but usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

917

explain_timerfd_create(3) explain_timerfd_create(3)

explained and this function, because many libc functions will alter the value oferrno.

clockid The original clockid, exactly as passed to thetimerfd_create(2) system call.

flags The original flags, exactly as passed to thetimerfd_create(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
int result = timerfd_create(clockid, flags);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_timerfd_create(message, sizeof(message),
err, clockid, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_timerfd_create_or_die(3) function.

SEE ALSO
timerfd_create(2)

timers that notify via file descriptors

explain_timerfd_create_or_die(3)
timers that notify via file descriptors and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

918

explain_timerfd_create_or_die(3) explain_timerfd_create_or_die(3)

NAME
explain_timerfd_create_or_die − create file descriptor timers and report errors

SYNOPSIS
#include <libexplain/timerfd_create.h>

int explain_timerfd_create_or_die(int clockid, int flags);
int explain_timerfd_create_on_error(int clockid, int flags);

DESCRIPTION
The explain_timerfd_create_or_diefunction is used to call thetimerfd_create(2) system call. On failure
an explanation will be printed tostderr, obtained from theexplain_timerfd_create(3) function, and then the
process terminates by callingexit(EXIT_FAILURE) .

The explain_timerfd_create_on_error function is used to call thetimerfd_create(2) system call. On
failure an explanation will be printed tostderr, obtained from theexplain_timerfd_create(3) function, but
still returns to the caller.

clockid The clockid, exactly as to be passed to thetimerfd_create(2) system call.

flags The flags, exactly as to be passed to thetimerfd_create(2) system call.

RETURN VALUE
The explain_timerfd_create_or_die function only returns on success, seetimerfd_create(2) for more
information. On failure, prints an explanation and exits, it does not return.

The explain_timerfd_create_on_error function always returns the value return by the wrapped
timerfd_create(2) system call.

EXAMPLE
The explain_timerfd_create_or_diefunction is intended to be used in a fashion similar to the following
example:

int result = explain_timerfd_create_or_die(clockid, flags);

SEE ALSO
timerfd_create(2)

timers that notify via file descriptors

explain_timerfd_create(3)
explain timerfd_create(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

919

explain_tmpfile(3) explain_tmpfile(3)

NAME
explain_tmpfile − explaintmpfile(3) errors

SYNOPSIS
#include <libexplain/tmpfile.h>

const char *explain_tmpfile(void);
const char *explain_errno_tmpfile(int errnum, void);
void explain_message_tmpfile(char *message, int message_size, void);
void explain_message_errno_tmpfile(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetmpfile(3) system call.

explain_tmpfile
const char *explain_tmpfile(void);

Theexplain_tmpfile function is used to obtain an explanation of an error returned by thetmpfile(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
FILE *result = tmpfile();
if (!result)
{

fprintf(stderr, "%s\n", explain_tmpfile());
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tmpfile_or_die(3) function.

explain_errno_tmpfile
const char *explain_errno_tmpfile(int errnum, void);

Theexplain_errno_tmpfile function is used to obtain an explanation of an error returned by thetmpfile(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
FILE *result = tmpfile();
if (!result)
{

int err = errno;

920

explain_tmpfile(3) explain_tmpfile(3)

fprintf(stderr, "%s\n", explain_errno_tmpfile(err,));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tmpfile_or_die(3) function.

explain_message_tmpfile
void explain_message_tmpfile(char *message, int message_size, void);

The explain_message_tmpfilefunction is used to obtain an explanation of an error returned by the
tmpfile(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
FILE *result = tmpfile();
if (!result)
{

char message[3000];
explain_message_tmpfile(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tmpfile_or_die(3) function.

explain_message_errno_tmpfile
void explain_message_errno_tmpfile(char *message, int message_size, int errnum, void);

Theexplain_message_errno_tmpfilefunction is used to obtain an explanation of an error returned by the
tmpfile(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
FILE *result = tmpfile();
if (!result)
{

int err = errno;
char message[3000];

explain_message_errno_tmpfile(message, sizeof(message), err,
);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tmpfile_or_die(3) function.

921

explain_tmpfile(3) explain_tmpfile(3)

SEE ALSO
tmpfile(3)

create a temporary file

explain_tmpfile_or_die(3)
create a temporary file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

922

explain_tmpfile_or_die(3) explain_tmpfile_or_die(3)

NAME
explain_tmpfile_or_die − create a temporary file and report errors

SYNOPSIS
#include <libexplain/tmpfile.h>

FILE *explain_tmpfile_or_die(void);
FILE *explain_tmpfile_on_error(void);

DESCRIPTION
The explain_tmpfile_or_die function is used to call thetmpfile(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_tmpfile(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_tmpfile_on_error function is used to call thetmpfile(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_tmpfile(3) function, but still returns to the caller.

RETURN VALUE
The explain_tmpfile_or_die function only returns on success, seetmpfile(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_tmpfile_on_error function always returns the value return by the wrappedtmpfile(3) system
call.

EXAMPLE
Theexplain_tmpfile_or_die function is intended to be used in a fashion similar to the following example:

FILE *result = explain_tmpfile_or_die();

SEE ALSO
tmpfile(3)

create a temporary file

explain_tmpfile(3)
explain tmpfile(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

923

explain_tmpnam(3) explain_tmpnam(3)

NAME
explain_tmpnam − explaintmpnam(3) errors

SYNOPSIS
#include <libexplain/tmpnam.h>

const char *explain_tmpnam(char *pathname);
const char *explain_errno_tmpnam(int errnum, char *pathname);
void explain_message_tmpnam(char *message, int message_size, char *pathname);
void explain_message_errno_tmpnam(char *message, int message_size, int errnum, char *pathname);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetmpnam(3) system call.

explain_tmpnam
const char *explain_tmpnam(char *pathname);

The explain_tmpnam function is used to obtain an explanation of an error returned by thetmpnam(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to thetmpnam(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = tmpnam(pathname);
if (!result)
{

fprintf(stderr, "%s\n", explain_tmpnam(pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tmpnam_or_die(3) function.

explain_errno_tmpnam
const char *explain_errno_tmpnam(int errnum, char *pathname);

The explain_errno_tmpnam function is used to obtain an explanation of an error returned by the
tmpnam(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thetmpnam(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

924

explain_tmpnam(3) explain_tmpnam(3)

Example: This function is intended to be used in a fashion similar to the following example:
char *result = tmpnam(pathname);
if (!result)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_tmpnam(err, pathname));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tmpnam_or_die(3) function.

explain_message_tmpnam
void explain_message_tmpnam(char *message, int message_size, char *pathname);

The explain_message_tmpnamfunction is used to obtain an explanation of an error returned by the
tmpnam(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thetmpnam(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = tmpnam(pathname);
if (!result)
{

char message[3000];
explain_message_tmpnam(message, sizeof(message), pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tmpnam_or_die(3) function.

explain_message_errno_tmpnam
void explain_message_errno_tmpnam(char *message, int message_size, int errnum, char *pathname);

Theexplain_message_errno_tmpnamfunction is used to obtain an explanation of an error returned by the
tmpnam(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thetmpnam(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
char *result = tmpnam(pathname);
if (!result)

925

explain_tmpnam(3) explain_tmpnam(3)

{
int err = errno;
char message[3000];

explain_message_errno_tmpnam(message, sizeof(message), err,
pathname);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_tmpnam_or_die(3) function.

SEE ALSO
tmpnam(3)

create a name for a temporary file

explain_tmpnam_or_die(3)
create a name for a temporary file and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

926

explain_tmpnam_or_die(3) explain_tmpnam_or_die(3)

NAME
explain_tmpnam_or_die − create a name for a temporary file and report errors

SYNOPSIS
#include <libexplain/tmpnam.h>

char *explain_tmpnam_or_die(char *pathname);
char *explain_tmpnam_on_error(char *pathname);

DESCRIPTION
Theexplain_tmpnam_or_diefunction is used to call thetmpnam(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_tmpnam(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_tmpnam_on_error function is used to call thetmpnam(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_tmpnam(3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed to thetmpnam(3) system call.

RETURN VALUE
The explain_tmpnam_or_die function only returns on success, seetmpnam(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_tmpnam_on_error function always returns the value return by the wrappedtmpnam(3)
system call.

EXAMPLE
Theexplain_tmpnam_or_diefunction is intended to be used in a fashion similar to the following example:

char *result = explain_tmpnam_or_die(pathname);

SEE ALSO
tmpnam(3)

create a name for a temporary file

explain_tmpnam(3)
explain tmpnam(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

927

explain_truncate(3) explain_truncate(3)

NAME
explain_truncate − explain truncate(2) errors

SYNOPSIS
#include <libexplain/truncate.h>

const char *explain_truncate(const char *pathname, long long length);
const char *explain_errno_truncate(int errnum, const char *pathname, long long length);
void explain_message_truncate(char *message, int message_size, const char *pathname, long long length);
void explain_message_errno_truncate(char *message, int message_size, int errnum, const char *pathname,
long long length);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thetruncate(2) system call.

explain_truncate
const char *explain_truncate(const char *pathname, long long length);

The explain_truncate function is used to obtain an explanation of an error returned by thetruncate(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (truncate(pathname, length) < 0)
{

fprintf(stderr, "%s\n", explain_truncate(pathname, length));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to thetruncate(2) system call.

length The original length, exactly as passed to thetruncate(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_truncate
const char *explain_errno_truncate(int errnum, const char *pathname, long long length);

The explain_errno_truncate function is used to obtain an explanation of an error returned by the
truncate(2) system call.The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (truncate(pathname, length) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_truncate(err, pathname, length));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

928

explain_truncate(3) explain_truncate(3)

pathname
The original pathname, exactly as passed to thetruncate(2) system call.

length The original length, exactly as passed to thetruncate(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_truncate
void explain_message_truncate(char *message, int message_size, const char *pathname, long long length);

Theexplain_message_truncatefunction may be used toobtain an explanation of an error returned by the
truncate(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (truncate(pathname, length) < 0)
{

char message[3000];
explain_message_truncate(message, sizeof(message), pathname, length);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to thetruncate(2) system call.

length The original length, exactly as passed to thetruncate(2) system call.

explain_message_errno_truncate
void explain_message_errno_truncate(char *message, int message_size, int errnum, const char *pathname,
long long length);

Theexplain_message_errno_truncatefunction may be used to obtain an explanation of an error returned
by thetruncate(2) system call. The least the message will contain is the value ofstrerror(errnum) ,
but usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (truncate(pathname, length) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_truncate(message, sizeof(message), err,

pathname, length);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

929

explain_truncate(3) explain_truncate(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to thetruncate(2) system call.

length The original length, exactly as passed to thetruncate(2) system call.

SEE ALSO
truncate(2)

truncate a file to a specified length

explain_truncate_or_die(3)
truncate a file to a specified length and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

930

explain_truncate_or_die(3) explain_truncate_or_die(3)

NAME
explain_truncate_or_die − truncate a file and report errors

SYNOPSIS
#include <libexplain/truncate.h>

void explain_truncate_or_die(const char *pathname, long long length);

DESCRIPTION
The explain_truncate_or_die function is used to call thetruncate(2) system call. On failure an
explanation will be printed tostderr, obtained fromexplain_truncate(3), and then the process terminates by
callingexit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_truncate_or_die(pathname, length);

pathname
The pathname, exactly as to be passed to thetruncate(2) system call.

length The length, exactly as to be passed to thetruncate(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
truncate(2)

truncate a file to a specified length

explain_truncate(3)
explain truncate(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

931

explain_uname(3) explain_uname(3)

NAME
explain_uname − explainuname(2) errors

SYNOPSIS
#include <libexplain/uname.h>

const char *explain_uname(struct utsname *data);
const char *explain_errno_uname(int errnum, struct utsname *data);
void explain_message_uname(char *message, int message_size, struct utsname *data);
void explain_message_errno_uname(char *message, int message_size, int errnum, struct utsname *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theuname(2) system call.

explain_uname
const char *explain_uname(struct utsname *data);

Theexplain_unamefunction is used to obtain an explanation of an error returned by theuname(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to theuname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (uname(data) < 0)
{

fprintf(stderr, "%s\n", explain_uname(data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_uname_or_die(3) function.

explain_errno_uname
const char *explain_errno_uname(int errnum, struct utsname *data);

Theexplain_errno_unamefunction is used to obtain an explanation of an error returned by theuname(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to theuname(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (uname(data) < 0)
{

932

explain_uname(3) explain_uname(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_uname(err, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_uname_or_die(3) function.

explain_message_uname
void explain_message_uname(char *message, int message_size, struct utsname *data);

The explain_message_unamefunction is used to obtain an explanation of an error returned by the
uname(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to theuname(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (uname(data) < 0)
{

char message[3000];
explain_message_uname(message, sizeof(message), data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_uname_or_die(3) function.

explain_message_errno_uname
void explain_message_errno_uname(char *message, int message_size, int errnum, struct utsname *data);

Theexplain_message_errno_unamefunction is used to obtain an explanation of an error returned by the
uname(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to theuname(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (uname(data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_uname(message, sizeof(message), err,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

933

explain_uname(3) explain_uname(3)

The above code example is available pre−packaged as theexplain_uname_or_die(3) function.

SEE ALSO
uname(2)

get name and information about current kernel

explain_uname_or_die(3)
get name and information about current kernel and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

934

explain_uname_or_die(3) explain_uname_or_die(3)

NAME
explain_uname_or_die − get information about current kernel and report errors

SYNOPSIS
#include <libexplain/uname.h>

void explain_uname_or_die(struct utsname *data);
int explain_uname_on_error(struct utsname *data);

DESCRIPTION
The explain_uname_or_diefunction is used to call theuname(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_uname(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_uname_on_errorfunction is used to call theuname(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_uname(3) function, but still returns to the caller.

data The data, exactly as to be passed to theuname(2) system call.

RETURN VALUE
The explain_uname_or_diefunction only returns on success, seeuname(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_uname_on_errorfunction always returns the value return by the wrappeduname(2) system
call.

EXAMPLE
Theexplain_uname_or_diefunction is intended to be used in a fashion similar to the following example:

explain_uname_or_die(data);

SEE ALSO
uname(2)

get name and information about current kernel

explain_uname(3)
explainuname(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

935

explain_ungetc(3) explain_ungetc(3)

NAME
explain_ungetc − explainungetc(3) errors

SYNOPSIS
#include <libexplain/ungetc.h>

const char *explain_ungetc(int c, FILE *fp);
const char *explain_errno_ungetc(int errnum, int c, FILE *fp);
void explain_message_ungetc(char *message, int message_size, int c, FILE *fp);
void explain_message_errno_ungetc(char *message, int message_size, int errnum, int c, FILE *fp);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theungetc(3) system call.

explain_ungetc
const char *explain_ungetc(int c, FILE *fp);

Theexplain_ungetcfunction is used to obtain an explanation of an error returned by theungetc(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

c The original c, exactly as passed to theungetc(3) system call.

fp The original fp, exactly as passed to theungetc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (ungetc(c, fp) < 0)
{

fprintf(stderr, "%s\n", explain_ungetc(c, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ungetc_or_die(3) function.

explain_errno_ungetc
const char *explain_errno_ungetc(int errnum, int c, FILE *fp);

Theexplain_errno_ungetcfunction is used to obtain an explanation of an error returned by theungetc(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

c The original c, exactly as passed to theungetc(3) system call.

fp The original fp, exactly as passed to theungetc(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:

936

explain_ungetc(3) explain_ungetc(3)

if (ungetc(c, fp) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ungetc(err, c, fp));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ungetc_or_die(3) function.

explain_message_ungetc
void explain_message_ungetc(char *message, int message_size, int c, FILE *fp);

The explain_message_ungetcfunction is used to obtain an explanation of an error returned by the
ungetc(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

c The original c, exactly as passed to theungetc(3) system call.

fp The original fp, exactly as passed to theungetc(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ungetc(c, fp) < 0)
{

char message[3000];
explain_message_ungetc(message, sizeof(message), c, fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ungetc_or_die(3) function.

explain_message_errno_ungetc
void explain_message_errno_ungetc(char *message, int message_size, int errnum, int c, FILE *fp);

The explain_message_errno_ungetcfunction is used to obtain an explanation of an error returned by the
ungetc(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

c The original c, exactly as passed to theungetc(3) system call.

fp The original fp, exactly as passed to theungetc(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ungetc(c, fp) < 0)
{

int err = errno;
char message[3000];

937

explain_ungetc(3) explain_ungetc(3)

explain_message_errno_ungetc(message, sizeof(message), err, c,
fp);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ungetc_or_die(3) function.

SEE ALSO
ungetc(3)

push a character back to a stream

explain_ungetc_or_die(3)
push a character back to a stream and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

938

explain_ungetc_or_die(3) explain_ungetc_or_die(3)

NAME
explain_ungetc_or_die − push a character back to a stream and report errors

SYNOPSIS
#include <libexplain/ungetc.h>

void explain_ungetc_or_die(int c, FILE *fp);
int explain_ungetc_on_error(int c, FILE *fp);

DESCRIPTION
The explain_ungetc_or_diefunction is used to call theungetc(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_ungetc(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_ungetc_on_errorfunction is used to call theungetc(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_ungetc(3) function, but still returns to the caller.

c The c, exactly as to be passed to theungetc(3) system call.

fp The fp, exactly as to be passed to theungetc(3) system call.

RETURN VALUE
The explain_ungetc_or_diefunction only returns on success, seeungetc(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_ungetc_on_errorfunction always returns the value return by the wrappedungetc(3) system
call.

EXAMPLE
Theexplain_ungetc_or_diefunction is intended to be used in a fashion similar to the following example:

explain_ungetc_or_die(c, fp);

SEE ALSO
ungetc(3)

push a character back to a stream

explain_ungetc(3)
explainungetc(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

939

explain_unlink(3) explain_unlink(3)

NAME
explain_unlink − explain unlink(2) errors

SYNOPSIS
#include <libexplain/unlink.h>
const char *explain_unlink(const char *pathname);
void explain_message_unlink(char *message, int message_size, const char *pathname);
const char *explain_errno_unlink(int errnum, const char *pathname);
void explain_message_errno_unlink(char *message, int message_size, int errnum, const char *pathname);

DESCRIPTION
These functions may be used to obtain explanations forunlink(2) errors.

explain_unlink
const char *explain_unlink(const char *pathname);

The explain_unlink function is used to obtain an explanation of an error returned by theunlink(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (unlink(pathname) < 0)
{

fprintf(stderr, ’%s0, explain_unlink(pathname));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to theunlink(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_unlink
const char *explain_errno_unlink(int errnum, const char * pathname);

The explain_errno_unlink function is used to obtain an explanation of an error returned by theunlink(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (unlink(pathname) < 0)
{

int err = errno;
fprintf(stderr, ’%s0, explain_errno_unlink(err, pathname));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theunlink(2) system call.

940

explain_unlink(3) explain_unlink(3)

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_unlink
void explain_message_unlink(char *message, int message_size, const char *pathname);

The explain_message_unlink function is used to obtain an explanation of an error returned by theunlink(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (unlink(pathname) < 0)
{

char message[3000];
explain_message_unlink(message, sizeof(message), pathname);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theunlink(2) system call.

explain_message_errno_unlink
void explain_message_errno_unlink(char *message, int message_size, int errnum, const char *pathname);

The explain_message_errno_unlink function is used to obtain an explanation of an error returned by the
unlink(2) system call. The least the message will contain is the value of strerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (unlink(pathname) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_unlink(message, sizeof(message), err,

pathname);
fprintf(stderr, ’%s0, message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. Because a message return buffer has been
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

941

explain_unlink(3) explain_unlink(3)

pathname
The original pathname, exactly as passed to theunlink(2) system call.

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

AUTHOR
Written by Peter Miller <pmiller@opensource.org.au>

942

explain_unlink_or_die(3) explain_unlink_or_die(3)

NAME
explain_unlink_or_die − delete a file and report errors

SYNOPSIS
#include <libexplain/unlink.h>

void explain_unlink_or_die(const char *pathname);

DESCRIPTION
The explain_unlink_or_die function is used to call theunlink(2) system call. On failure an explanation
will be printed tostderr, obtained fromexplain_unlink(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_unlink_or_die(pathname);

pathname
The pathname, exactly as to be passed to theunlink(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
unlink(2)

delete a name and possibly the file it refers to

explain_unlink(3)
explainunlink(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

943

explain_unsetenv(3) explain_unsetenv(3)

NAME
explain_unsetenv − explainunsetenv(3) errors

SYNOPSIS
#include <libexplain/unsetenv.h>

const char *explain_unsetenv(const char *name);
const char *explain_errno_unsetenv(int errnum, const char *name);
void explain_message_unsetenv(char *message, int message_size, const char *name);
void explain_message_errno_unsetenv(char *message, int message_size, int errnum, const char *name);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theunsetenv(3) system call.

explain_unsetenv
const char *explain_unsetenv(const char *name);

The explain_unsetenvfunction is used to obtain an explanation of an error returned by theunsetenv(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

name The original name, exactly as passed to theunsetenv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (unsetenv(name) < 0)
{

fprintf(stderr, "%s\n", explain_unsetenv(name));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_unsetenv_or_die(3) function.

explain_errno_unsetenv
const char *explain_errno_unsetenv(int errnum, const char *name);

The explain_errno_unsetenv function is used to obtain an explanation of an error returned by the
unsetenv(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

name The original name, exactly as passed to theunsetenv(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (unsetenv(name) < 0)
{

944

explain_unsetenv(3) explain_unsetenv(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_unsetenv(err, name));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_unsetenv_or_die(3) function.

explain_message_unsetenv
void explain_message_unsetenv(char *message, int message_size, const char *name);

The explain_message_unsetenvfunction is used to obtain an explanation of an error returned by the
unsetenv(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

name The original name, exactly as passed to theunsetenv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (unsetenv(name) < 0)
{

char message[3000];
explain_message_unsetenv(message, sizeof(message), name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_unsetenv_or_die(3) function.

explain_message_errno_unsetenv
void explain_message_errno_unsetenv(char *message, int message_size, int errnum, const char *name);

The explain_message_errno_unsetenvfunction is used to obtain an explanation of an error returned by
the unsetenv(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

name The original name, exactly as passed to theunsetenv(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (unsetenv(name) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_unsetenv(message, sizeof(message), err,
name);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

945

explain_unsetenv(3) explain_unsetenv(3)

The above code example is available pre-packaged as theexplain_unsetenv_or_die(3) function.

SEE ALSO
unsetenv(3)

change or add an environment variable

explain_unsetenv_or_die(3)
change or add an environment variable and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

946

explain_unsetenv_or_die(3) explain_unsetenv_or_die(3)

NAME
explain_unsetenv_or_die − remove an environment variable and report errors

SYNOPSIS
#include <libexplain/unsetenv.h>

void explain_unsetenv_or_die(const char *name);
int explain_unsetenv_on_error(const char *name);

DESCRIPTION
The explain_unsetenv_or_die function is used to call theunsetenv(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_unsetenv(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_unsetenv_on_error function is used to call theunsetenv(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_unsetenv(3) function, but still returns to the
caller.

name The name, exactly as to be passed to theunsetenv(3) system call.

RETURN VALUE
Theexplain_unsetenv_or_diefunction only returns on success, seeunsetenv(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_unsetenv_on_errorfunction always returns the value return by the wrappedunsetenv(3)
system call.

EXAMPLE
The explain_unsetenv_or_diefunction is intended to be used in a fashion similar to the following
example:

explain_unsetenv_or_die(name);

SEE ALSO
unsetenv(3)

change or add an environment variable

explain_unsetenv(3)
explainunsetenv(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

947

explain_usleep(3) explain_usleep(3)

NAME
explain_usleep − explainusleep(3) errors

SYNOPSIS
#include <libexplain/usleep.h>

const char *explain_usleep(long long usec);
const char *explain_errno_usleep(int errnum, long long usec);
void explain_message_usleep(char *message, int message_size, long long usec);
void explain_message_errno_usleep(char *message, int message_size, int errnum, long long usec);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theusleep(3) system call.

explain_usleep
const char *explain_usleep(long long usec);

Theexplain_usleepfunction is used to obtain an explanation of an error returned by theusleep(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

usec The original usec, exactly as passed to theusleep(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (usleep(usec) < 0)
{

fprintf(stderr, "%s\n", explain_usleep(usec));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_usleep_or_die(3) function.

explain_errno_usleep
const char *explain_errno_usleep(int errnum, long long usec);

The explain_errno_usleepfunction is used to obtain an explanation of an error returned by theusleep(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

usec The original usec, exactly as passed to theusleep(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (usleep(usec) < 0)
{

948

explain_usleep(3) explain_usleep(3)

int err = errno;
fprintf(stderr, "%s\n", explain_errno_usleep(err, usec));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_usleep_or_die(3) function.

explain_message_usleep
void explain_message_usleep(char *message, int message_size, long long usec);

The explain_message_usleepfunction is used to obtain an explanation of an error returned by the
usleep(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

usec The original usec, exactly as passed to theusleep(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (usleep(usec) < 0)
{

char message[3000];
explain_message_usleep(message, sizeof(message), usec);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_usleep_or_die(3) function.

explain_message_errno_usleep
void explain_message_errno_usleep(char *message, int message_size, int errnum, long long usec);

The explain_message_errno_usleepfunction is used to obtain an explanation of an error returned by the
usleep(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

usec The original usec, exactly as passed to theusleep(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (usleep(usec) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_usleep(message, sizeof(message), err,
usec);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

949

explain_usleep(3) explain_usleep(3)

The above code example is available pre−packaged as theexplain_usleep_or_die(3) function.

SEE ALSO
usleep(3)

suspend execution for microsecond intervals

explain_usleep_or_die(3)
suspend execution for microsecond intervals and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

950

explain_usleep_or_die(3) explain_usleep_or_die(3)

NAME
explain_usleep_or_die − suspend execution for ms intervals and report errors

SYNOPSIS
#include <libexplain/usleep.h>

void explain_usleep_or_die(long long usec);
int explain_usleep_on_error(long long usec);

DESCRIPTION
The explain_usleep_or_diefunction is used to call theusleep(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_usleep(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_usleep_on_errorfunction is used to call theusleep(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_usleep(3) function, but still returns to the caller.

usec The usec, exactly as to be passed to theusleep(3) system call.

RETURN VALUE
The explain_usleep_or_diefunction only returns on success, seeusleep(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_usleep_on_errorfunction always returns the value return by the wrappedusleep(3) system
call.

EXAMPLE
Theexplain_usleep_or_diefunction is intended to be used in a fashion similar to the following example:

explain_usleep_or_die(usec);

SEE ALSO
usleep(3)

suspend execution for microsecond intervals

explain_usleep(3)
explainusleep(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

951

explain_ustat(3) explain_ustat(3)

NAME
explain_ustat − explain ustat(2) errors

SYNOPSIS
#include <libexplain/ustat.h>

const char *explain_ustat(dev_t dev, struct ustat *ubuf);
const char *explain_errno_ustat(int errnum, dev_t dev, struct ustat *ubuf);
void explain_message_ustat(char *message, int message_size, dev_t dev, struct ustat *ubuf);
void explain_message_errno_ustat(char *message, int message_size, int errnum, dev_t dev, struct ustat
*ubuf);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theustat(2) system call.

explain_ustat
const char *explain_ustat(dev_t dev, struct ustat *ubuf);

Theexplain_ustat function is used to obtain an explanation of an error returned by theustat(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

dev The original dev, exactly as passed to theustat(2) system call.

ubuf The original ubuf, exactly as passed to theustat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (ustat(dev, ubuf) < 0)
{

fprintf(stderr, "%s\n", explain_ustat(dev, ubuf));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ustat_or_die(3) function.

explain_errno_ustat
const char *explain_errno_ustat(int errnum, dev_t dev, struct ustat *ubuf);

The explain_errno_ustat function is used to obtain an explanation of an error returned by theustat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dev The original dev, exactly as passed to theustat(2) system call.

ubuf The original ubuf, exactly as passed to theustat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

952

explain_ustat(3) explain_ustat(3)

Example: This function is intended to be used in a fashion similar to the following example:
if (ustat(dev, ubuf) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_ustat(err, dev, ubuf));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ustat_or_die(3) function.

explain_message_ustat
void explain_message_ustat(char *message, int message_size, dev_t dev, struct ustat *ubuf);

The explain_message_ustatfunction is used to obtain an explanation of an error returned by theustat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

dev The original dev, exactly as passed to theustat(2) system call.

ubuf The original ubuf, exactly as passed to theustat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ustat(dev, ubuf) < 0)
{

char message[3000];
explain_message_ustat(message, sizeof(message), dev, ubuf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ustat_or_die(3) function.

explain_message_errno_ustat
void explain_message_errno_ustat(char *message, int message_size, int errnum, dev_t dev, struct ustat
*ubuf);

The explain_message_errno_ustatfunction is used to obtain an explanation of an error returned by the
ustat(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

dev The original dev, exactly as passed to theustat(2) system call.

ubuf The original ubuf, exactly as passed to theustat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (ustat(dev, ubuf) < 0)
{

953

explain_ustat(3) explain_ustat(3)

int err = errno;
char message[3000];

explain_message_errno_ustat(message, sizeof(message), err,
dev, ubuf);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_ustat_or_die(3) function.

SEE ALSO
ustat(2) get file system statistics

explain_ustat_or_die(3)
get file system statistics and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

954

explain_ustat_or_die(3) explain_ustat_or_die(3)

NAME
explain_ustat_or_die − get file system statistics and report errors

SYNOPSIS
#include <libexplain/ustat.h>

void explain_ustat_or_die(dev_t dev, struct ustat *ubuf);
int explain_ustat_on_error(dev_t dev, struct ustat *ubuf);

DESCRIPTION
The explain_ustat_or_diefunction is used to call theustat(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_ustat(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

Theexplain_ustat_on_errorfunction is used to call theustat(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_ustat(3) function, but still returns to the caller.

dev The dev, exactly as to be passed to theustat(2) system call.

ubuf The ubuf, exactly as to be passed to theustat(2) system call.

RETURN VALUE
Theexplain_ustat_or_diefunction only returns on success, seeustat(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_ustat_on_errorfunction always returns the value return by the wrappedustat(2) system call.

EXAMPLE
Theexplain_ustat_or_diefunction is intended to be used in a fashion similar to the following example:

explain_ustat_or_die(dev, ubuf);

SEE ALSO
ustat(2) get file system statistics

explain_ustat(3)
explainustat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

955

explain_utime(3) explain_utime(3)

NAME
explain_utime − explain utime(2) errors

SYNOPSIS
#include <libexplain/utime.h>

const char *explain_utime(const char *pathname, const struct utimbuf *times);
const char *explain_errno_utime(int errnum, const char *pathname, const struct utimbuf *times);
void explain_message_utime(char *message, int message_size, const char *pathname, const struct utimbuf
*times);
void explain_message_errno_utime(char *message, int message_size, int errnum, const char *pathname,
const struct utimbuf *times);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theutime(2) system call.

explain_utime
const char *explain_utime(const char *pathname, const struct utimbuf *times);

The explain_utime function is used to obtain an explanation of an error returned by theutime(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (utime(pathname, times) < 0)
{

fprintf(stderr, "%s\n", explain_utime(pathname, times));
exit(EXIT_FAILURE);

}

pathname
The original pathname, exactly as passed to theutime(2) system call.

times The original times, exactly as passed to theutime(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_utime
const char *explain_errno_utime(int errnum, const char *pathname, const struct utimbuf *times);

The explain_errno_utime function is used to obtain an explanation of an error returned by theutime(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (utime(pathname, times) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_utime(err, pathname, times));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

956

explain_utime(3) explain_utime(3)

pathname
The original pathname, exactly as passed to theutime(2) system call.

times The original times, exactly as passed to theutime(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_utime
void explain_message_utime(char *message, int message_size, const char *pathname, const struct utimbuf
*times);

The explain_message_utimefunction may be used to obtain an explanation of an error returned by the
utime(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (utime(pathname, times) < 0)
{

char message[3000];
explain_message_utime(message, sizeof(message), pathname, times);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theutime(2) system call.

times The original times, exactly as passed to theutime(2) system call.

explain_message_errno_utime
void explain_message_errno_utime(char *message, int message_size, int errnum, const char *pathname,
const struct utimbuf *times);

Theexplain_message_errno_utimefunction may be used to obtain an explanation of an error returned by
the utime(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (utime(pathname, times) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_utime(message, sizeof(message), err,

pathname, times);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

957

explain_utime(3) explain_utime(3)

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theutime(2) system call.

times The original times, exactly as passed to theutime(2) system call.

SEE ALSO
utime(2) change file last access and modification times

explain_utime_or_die(3)
change file last access and modification times and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

958

explain_utimens(3) explain_utimens(3)

NAME
explain_utimens − explainutimens(2) errors

SYNOPSIS
#include <libexplain/utimens.h>

const char *explain_utimens(const char *pathname, const struct timespec *data);
const char *explain_errno_utimens(int errnum, const char *pathname, const struct timespec *data);
void explain_message_utimens(char *message, int message_size, const char *pathname, const struct
timespec *data);
void explain_message_errno_utimens(char *message, int message_size, int errnum, const char *pathname,
const struct timespec *data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theutimens(2) system call.

explain_utimens
const char *explain_utimens(const char *pathname, const struct timespec *data);

The explain_utimens function is used to obtain an explanation of an error returned by theutimens(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to theutimens(2) system call.

data The original data, exactly as passed to theutimens(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimens(pathname, data) < 0)
{

fprintf(stderr, "%s\n", explain_utimens(pathname, data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_utimens_or_die(3) function.

explain_errno_utimens
const char *explain_errno_utimens(int errnum, const char *pathname, const struct timespec *data);

The explain_errno_utimens function is used to obtain an explanation of an error returned by the
utimens(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theutimens(2) system call.

data The original data, exactly as passed to theutimens(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

959

explain_utimens(3) explain_utimens(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimens(pathname, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_utimens(err, pathname,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_utimens_or_die(3) function.

explain_message_utimens
void explain_message_utimens(char *message, int message_size, const char *pathname, const struct
timespec *data);

The explain_message_utimensfunction is used to obtain an explanation of an error returned by the
utimens(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theutimens(2) system call.

data The original data, exactly as passed to theutimens(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimens(pathname, data) < 0)
{

char message[3000];
explain_message_utimens(message, sizeof(message), pathname,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_utimens_or_die(3) function.

explain_message_errno_utimens
void explain_message_errno_utimens(char *message, int message_size, int errnum, const char *pathname,
const struct timespec *data);

Theexplain_message_errno_utimensfunction is used to obtain an explanation of an error returned by the
utimens(2) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

960

explain_utimens(3) explain_utimens(3)

explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theutimens(2) system call.

data The original data, exactly as passed to theutimens(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimens(pathname, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_utimens(message, sizeof(message), err,
pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_utimens_or_die(3) function.

SEE ALSO
utimens(2)

change file last access and modification times

explain_utimens_or_die(3)
change file last access and modification times and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

961

explain_utimensat(3) explain_utimensat(3)

NAME
explain_utimensat − explainutimensat(2) errors

SYNOPSIS
#include <libexplain/utimensat.h>

const char *explain_utimensat(int fildes, const char *pathname, const struct timespec *data, int flags);
const char *explain_errno_utimensat(int errnum, int fildes, const char *pathname, const struct timespec
*data, int flags);
void explain_message_utimensat(char *message, int message_size, int fildes, const char *pathname, const
struct timespec *data, int flags);
void explain_message_errno_utimensat(char *message, int message_size, int errnum, int fildes, const char
*pathname, const struct timespec *data, int flags);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theutimensat(2) system call.

explain_utimensat
const char *explain_utimensat(int fildes, const char *pathname, const struct timespec *data, int flags);

The explain_utimensat function is used to obtain an explanation of an error returned by theutimensat(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fildes The original fildes, exactly as passed to theutimensat(2) system call.

pathname
The original pathname, exactly as passed to theutimensat(2) system call.

data The original data, exactly as passed to theutimensat(2) system call.

flags The original flags, exactly as passed to theutimensat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimensat(fildes, pathname, data, flags) < 0)
{

fprintf(stderr, "%s\n", explain_utimensat(fildes, pathname,
data, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_utimensat_or_die(3) function.

explain_errno_utimensat
const char *explain_errno_utimensat(int errnum, int fildes, const char *pathname, const struct timespec
*data, int flags);

The explain_errno_utimensat function is used to obtain an explanation of an error returned by the
utimensat(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

962

explain_utimensat(3) explain_utimensat(3)

fildes The original fildes, exactly as passed to theutimensat(2) system call.

pathname
The original pathname, exactly as passed to theutimensat(2) system call.

data The original data, exactly as passed to theutimensat(2) system call.

flags The original flags, exactly as passed to theutimensat(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimensat(fildes, pathname, data, flags) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_utimensat(err, fildes,
pathname, data, flags));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_utimensat_or_die(3) function.

explain_message_utimensat
void explain_message_utimensat(char *message, int message_size, int fildes, const char *pathname, const
struct timespec *data, int flags);

The explain_message_utimensatfunction is used to obtain an explanation of an error returned by the
utimensat(2) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fildes The original fildes, exactly as passed to theutimensat(2) system call.

pathname
The original pathname, exactly as passed to theutimensat(2) system call.

data The original data, exactly as passed to theutimensat(2) system call.

flags The original flags, exactly as passed to theutimensat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimensat(fildes, pathname, data, flags) < 0)
{

char message[3000];
explain_message_utimensat(message, sizeof(message), fildes,
pathname, data, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_utimensat_or_die(3) function.

963

explain_utimensat(3) explain_utimensat(3)

explain_message_errno_utimensat
void explain_message_errno_utimensat(char *message, int message_size, int errnum, int fildes, const char
*pathname, const struct timespec *data, int flags);

The explain_message_errno_utimensatfunction is used to obtain an explanation of an error returned by
theutimensat(2) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fildes The original fildes, exactly as passed to theutimensat(2) system call.

pathname
The original pathname, exactly as passed to theutimensat(2) system call.

data The original data, exactly as passed to theutimensat(2) system call.

flags The original flags, exactly as passed to theutimensat(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimensat(fildes, pathname, data, flags) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_utimensat(message, sizeof(message), err,
fildes, pathname, data, flags);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_utimensat_or_die(3) function.

SEE ALSO
utimensat(2)

change file timestamps with nanosecond precision

explain_utimensat_or_die(3)
change file timestamps with nanosecond precision and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

964

explain_utimensat_or_die(3) explain_utimensat_or_die(3)

NAME
explain_utimensat_or_die − change file timestamps and report errors

SYNOPSIS
#include <libexplain/utimensat.h>

void explain_utimensat_or_die(int fildes, const char *pathname, const struct timespec *data, int flags);
int explain_utimensat_on_error(int fildes, const char *pathname, const struct timespec *data, int flags);

DESCRIPTION
The explain_utimensat_or_die function is used to call theutimensat(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_utimensat(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_utimensat_on_error function is used to call theutimensat(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_utimensat(3) function, but still returns to
the caller.

fildes The fildes, exactly as to be passed to theutimensat(2) system call.

pathname
The pathname, exactly as to be passed to theutimensat(2) system call.

data The data, exactly as to be passed to theutimensat(2) system call.

flags The flags, exactly as to be passed to theutimensat(2) system call.

RETURN VALUE
The explain_utimensat_or_diefunction only returns on success, seeutimensat(2) for more information.
On failure, prints an explanation and exits, it does not return.

The explain_utimensat_on_error function always returns the value return by the wrappedutimensat(2)
system call.

EXAMPLE
The explain_utimensat_or_die function is intended to be used in a fashion similar to the following
example:

explain_utimensat_or_die(fildes, pathname, data, flags);

SEE ALSO
utimensat(2)

change file timestamps with nanosecond precision

explain_utimensat(3)
explainutimensat(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

965

explain_utimens_or_die(3) explain_utimens_or_die(3)

NAME
explain_utimens_or_die − change file timestamps and report errors

SYNOPSIS
#include <libexplain/utimens.h>

void explain_utimens_or_die(const char *pathname, const struct timespec *data);
int explain_utimens_on_error(const char *pathname, const struct timespec *data);

DESCRIPTION
Theexplain_utimens_or_diefunction is used to call theutimens(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_utimens(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_utimens_on_error function is used to call theutimens(2) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_utimens(3) function, but still returns to the
caller.

pathname
The pathname, exactly as to be passed to theutimens(2) system call.

data The data, exactly as to be passed to theutimens(2) system call.

RETURN VALUE
The explain_utimens_or_diefunction only returns on success, seeutimens(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_utimens_on_error function always returns the value return by the wrappedutimens(2)
system call.

EXAMPLE
Theexplain_utimens_or_diefunction is intended to be used in a fashion similar to the following example:

explain_utimens_or_die(pathname, data);

SEE ALSO
utimens(2)

change file last access and modification times

explain_utimens(3)
explainutimens(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2012 Peter Miller

966

explain_utime_or_die(3) explain_utime_or_die(3)

NAME
explain_utime_or_die − change file times and report errors

SYNOPSIS
#include <libexplain/utime.h>

void explain_utime_or_die(const char *pathname, const struct utimbuf *times);

DESCRIPTION
Theexplain_utime_or_diefunction is used to call theutime(2) system call.On failure an explanation will
be printed tostderr, obtained from explain_utime(3), and then the process terminates by calling
exit(EXIT_FAILURE) .

This function is intended to be used in a fashion similar to the following example:
explain_utime_or_die(pathname, times);

pathname
The pathname, exactly as to be passed to theutime(2) system call.

times The times, exactly as to be passed to theutime(2) system call.

Returns: This function only returns on success. On failure, prints an explanation and exits.

SEE ALSO
utime(2) change file last access and modification times

explain_utime(3)
explainutime(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

967

explain_utimes(3) explain_utimes(3)

NAME
explain_utimes − explainutimes(2) errors

SYNOPSIS
#include <libexplain/utimes.h>

const char *explain_utimes(const char *pathname, const struct timeval * data);
const char *explain_errno_utimes(int errnum, const char *pathname, const struct timeval * data);
void explain_message_utimes(char *message, int message_size, const char *pathname, const struct timeval
*data);
void explain_message_errno_utimes(char *message, int message_size, int errnum, const char *pathname,
const struct timeval * data);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by theutimes(2) system call.

explain_utimes
const char *explain_utimes(const char *pathname, const struct timeval * data);

Theexplain_utimesfunction is used to obtain an explanation of an error returned by theutimes(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

pathname
The original pathname, exactly as passed to theutimes(2) system call.

data The original data, exactly as passed to theutimes(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimes(pathname, data) < 0)
{

fprintf(stderr, "%s\n", explain_utimes(pathname, data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_utimes_or_die(3) function.

explain_errno_utimes
const char *explain_errno_utimes(int errnum, const char *pathname, const struct timeval * data);

Theexplain_errno_utimesfunction is used to obtain an explanation of an error returned by theutimes(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theutimes(2) system call.

data The original data, exactly as passed to theutimes(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any

968

explain_utimes(3) explain_utimes(3)

libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimes(pathname, data) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_utimes(err, pathname,
data));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_utimes_or_die(3) function.

explain_message_utimes
void explain_message_utimes(char *message, int message_size, const char *pathname, const struct timeval
*data);

The explain_message_utimesfunction is used to obtain an explanation of an error returned by the
utimes(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

pathname
The original pathname, exactly as passed to theutimes(2) system call.

data The original data, exactly as passed to theutimes(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimes(pathname, data) < 0)
{

char message[3000];
explain_message_utimes(message, sizeof(message), pathname,
data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_utimes_or_die(3) function.

explain_message_errno_utimes
void explain_message_errno_utimes(char *message, int message_size, int errnum, const char *pathname,
const struct timeval * data);

The explain_message_errno_utimesfunction is used to obtain an explanation of an error returned by the
utimes(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

969

explain_utimes(3) explain_utimes(3)

explained and this function, because many libc functions will alter the value oferrno.

pathname
The original pathname, exactly as passed to theutimes(2) system call.

data The original data, exactly as passed to theutimes(2) system call.

Example: This function is intended to be used in a fashion similar to the following example:
if (utimes(pathname, data) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_utimes(message, sizeof(message), err,
pathname, data);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_utimes_or_die(3) function.

SEE ALSO
utimes(2)

change file last access and modification times

explain_utimes_or_die(3)
change file last access and modification times and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

970

explain_utimes_or_die(3) explain_utimes_or_die(3)

NAME
explain_utimes_or_die − change file access and modify times and report errors

SYNOPSIS
#include <libexplain/utimes.h>

void explain_utimes_or_die(const char *pathname, const struct timeval * data);
int explain_utimes_on_error(const char *pathname, const struct timeval * data);

DESCRIPTION
The explain_utimes_or_diefunction is used to call theutimes(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_utimes(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_utimes_on_errorfunction is used to call theutimes(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_utimes(3) function, but still returns to the caller.

pathname
The pathname, exactly as to be passed to theutimes(2) system call.

data The data, exactly as to be passed to theutimes(2) system call.

RETURN VALUE
The explain_utimes_or_die function only returns on success, seeutimes(2) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_utimes_on_error function always returns the value return by the wrappedutimes(2) system
call.

EXAMPLE
Theexplain_utimes_or_diefunction is intended to be used in a fashion similar to the following example:

explain_utimes_or_die(pathname, data);

SEE ALSO
utimes(2)

change file last access and modification times

explain_utimes(3)
explainutimes(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

971

explain_vasprintf(3) explain_vasprintf(3)

NAME
explain_vasprintf − explainvasprintf(3) errors

SYNOPSIS
#include <libexplain/vasprintf.h>

const char *explain_vasprintf(char **data, const char *format, va_list ap);
const char *explain_errno_vasprintf(int errnum, char **data, const char *format, va_list ap);
void explain_message_vasprintf(char *message, int message_size, char **data, const char *format, va_list
ap);
void explain_message_errno_vasprintf(char *message, int message_size, int errnum, char **data, const
char *format, va_list ap);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thevasprintf(3) system call.

explain_vasprintf
const char *explain_vasprintf(char **data, const char *format, va_list ap);

The explain_vasprintf function is used to obtain an explanation of an error returned by thevasprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thevasprintf(3) system call.

format The original format, exactly as passed to thevasprintf(3) system call.

ap The original ap, exactly as passed to thevasprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vasprintf(data, format, ap);
if (result < 0 || errno != 0)
{

fprintf(stderr, "%s\n", explain_vasprintf(data, format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_vasprintf_or_die(3) function.

explain_errno_vasprintf
const char *explain_errno_vasprintf(int errnum, char **data, const char *format, va_list ap);

The explain_errno_vasprintf function is used to obtain an explanation of an error returned by the
vasprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thevasprintf(3) system call.

format The original format, exactly as passed to thevasprintf(3) system call.

972

explain_vasprintf(3) explain_vasprintf(3)

ap The original ap, exactly as passed to thevasprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vasprintf(data, format, ap);
if (result < 0 || errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_vasprintf(err, data,
format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_vasprintf_or_die(3) function.

explain_message_vasprintf
void explain_message_vasprintf(char *message, int message_size, char **data, const char *format, va_list
ap);

The explain_message_vasprintffunction is used to obtain an explanation of an error returned by the
vasprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thevasprintf(3) system call.

format The original format, exactly as passed to thevasprintf(3) system call.

ap The original ap, exactly as passed to thevasprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vasprintf(data, format, ap);
if (result < 0 || errno != 0)
{

char message[3000];
explain_message_vasprintf(message, sizeof(message), data,
format, ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_vasprintf_or_die(3) function.

explain_message_errno_vasprintf
void explain_message_errno_vasprintf(char *message, int message_size, int errnum, char **data, const
char *format, va_list ap);

The explain_message_errno_vasprintffunction is used to obtain an explanation of an error returned by
the vasprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but

973

explain_vasprintf(3) explain_vasprintf(3)

usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thevasprintf(3) system call.

format The original format, exactly as passed to thevasprintf(3) system call.

ap The original ap, exactly as passed to thevasprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vasprintf(data, format, ap);
if (result < 0 || errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_vasprintf(message, sizeof(message), err,
data, format, ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre−packaged as theexplain_vasprintf_or_die(3) function.

SEE ALSO
vasprintf(3)

print to allocated string

explain_vasprintf_or_die(3)
print to allocated string and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

974

explain_vasprintf_or_die(3) explain_vasprintf_or_die(3)

NAME
explain_vasprintf_or_die − print to allocated string and report errors

SYNOPSIS
#include <libexplain/vasprintf.h>

int explain_vasprintf_or_die(char **data, const char *format, va_list ap);
int explain_vasprintf_on_error(char **data, const char *format, va_list ap);

DESCRIPTION
The explain_vasprintf_or_die function is used to call thevasprintf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_vasprintf(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_vasprintf_on_error function is used to call thevasprintf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_vasprintf(3) function, but still returns to the
caller.

data The data, exactly as to be passed to thevasprintf(3) system call.

format The format, exactly as to be passed to thevasprintf(3) system call.

ap The ap, exactly as to be passed to thevasprintf(3) system call.

RETURN VALUE
Theexplain_vasprintf_or_die function only returns on success, seevasprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_vasprintf_on_error function always returns the value return by the wrappedvasprintf(3)
system call.

EXAMPLE
The explain_vasprintf_or_die function is intended to be used in a fashion similar to the following
example:

int result = explain_vasprintf_or_die(data, format, ap);

SEE ALSO
vasprintf(3)

print to allocated string

explain_vasprintf(3)
explainvasprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2013 Peter Miller

975

explain_vfork(3) explain_vfork(3)

NAME
explain_vfork − explainvfork(2) errors

SYNOPSIS
#include <libexplain/vfork.h>

const char *explain_vfork(void);
const char *explain_errno_vfork(int errnum, void);
void explain_message_vfork(char *message, int message_size, void);
void explain_message_errno_vfork(char *message, int message_size, int errnum, void);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thevfork(2) system call.

explain_vfork
const char *explain_vfork(void);

The explain_vfork function is used to obtain an explanation of an error returned by thevfork(2) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = vfork();
if (result < 0)
{

fprintf(stderr, "%s\n", explain_vfork());
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vfork_or_die(3) function.

explain_errno_vfork
const char *explain_errno_vfork(int errnum, void);

The explain_errno_vfork function is used to obtain an explanation of an error returned by thevfork(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = vfork();
if (result < 0)
{

int err = errno;

976

explain_vfork(3) explain_vfork(3)

fprintf(stderr, "%s\n", explain_errno_vfork(err,));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vfork_or_die(3) function.

explain_message_vfork
void explain_message_vfork(char *message, int message_size, void);

Theexplain_message_vforkfunction is used to obtain an explanation of an error returned by thevfork(2)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = vfork();
if (result < 0)
{

char message[3000];
explain_message_vfork(message, sizeof(message),);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vfork_or_die(3) function.

explain_message_errno_vfork
void explain_message_errno_vfork(char *message, int message_size, int errnum, void);

The explain_message_errno_vforkfunction is used to obtain an explanation of an error returned by the
vfork(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

Example: This function is intended to be used in a fashion similar to the following example:
pid_t result = vfork();
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_vfork(message, sizeof(message), err,);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vfork_or_die(3) function.

977

explain_vfork(3) explain_vfork(3)

SEE ALSO
vfork(2) create a child process and block parent

explain_vfork_or_die(3)
create a child process and block parent and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

978

explain_vfork_or_die(3) explain_vfork_or_die(3)

NAME
explain_vfork_or_die − create a child process and report errors

SYNOPSIS
#include <libexplain/vfork.h>

pid_t explain_vfork_or_die(void);
pid_t explain_vfork_on_error(void);

DESCRIPTION
Theexplain_vfork_or_die function is used to call thevfork(2) system call. On failure an explanation will
be printed tostderr, obtained from theexplain_vfork(3) function, and then the process terminates by calling
exit(EXIT_FAILURE) .

The explain_vfork_on_error function is used to call thevfork(2) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_vfork(3) function, but still returns to the caller.

RETURN VALUE
Theexplain_vfork_or_die function only returns on success, seevfork(2) for more information. On failure,
prints an explanation and exits, it does not return.

Theexplain_vfork_on_error function always returns the value return by the wrappedvfork(2) system call.

EXAMPLE
Theexplain_vfork_or_die function is intended to be used in a fashion similar to the following example:

pid_t result = explain_vfork_or_die();

SEE ALSO
vfork(2) create a child process and block parent

explain_vfork(3)
explainvfork(2) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2009 Peter Miller

979

explain_vfprintf(3) explain_vfprintf(3)

NAME
explain_vfprintf − explainvfprintf(3) errors

SYNOPSIS
#include <libexplain/vfprintf.h>

const char *explain_vfprintf(FILE *fp, const char *format, va_list ap);
const char *explain_errno_vfprintf(int errnum, FILE *fp, const char *format, va_list ap);
void explain_message_vfprintf(char *message, int message_size, FILE *fp, const char *format, va_list ap);
void explain_message_errno_vfprintf(char *message, int message_size, int errnum, FILE *fp, const char
*format, va_list ap);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thevfprintf(3) system call.

explain_vfprintf
const char *explain_vfprintf(FILE *fp, const char *format, va_list ap);

The explain_vfprintf function is used to obtain an explanation of an error returned by thevfprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

fp The original fp, exactly as passed to thevfprintf(3) system call.

format The original format, exactly as passed to thevfprintf(3) system call.

ap The original ap, exactly as passed to thevfprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL; if (vfprintf(fp, format, ap) < 0)
{

fprintf(stderr, "%s\n", explain_vfprintf(fp, format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vfprintf_or_die(3) function.

explain_errno_vfprintf
const char *explain_errno_vfprintf(int errnum, FILE *fp, const char *format, va_list ap);

The explain_errno_vfprintf function is used to obtain an explanation of an error returned by the
vfprintf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

fp The original fp, exactly as passed to thevfprintf(3) system call.

format The original format, exactly as passed to thevfprintf(3) system call.

ap The original ap, exactly as passed to thevfprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

980

explain_vfprintf(3) explain_vfprintf(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL; if (vfprintf(fp, format, ap) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_vfprintf(err, fp,
format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vfprintf_or_die(3) function.

explain_message_vfprintf
void explain_message_vfprintf(char *message, int message_size, FILE *fp, const char *format, va_list ap);

The explain_message_vfprintf function is used to obtain an explanation of an error returned by the
vfprintf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

fp The original fp, exactly as passed to thevfprintf(3) system call.

format The original format, exactly as passed to thevfprintf(3) system call.

ap The original ap, exactly as passed to thevfprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL; if (vfprintf(fp, format, ap) < 0)
{

char message[3000];
explain_message_vfprintf(message, sizeof(message), fp, format,
ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vfprintf_or_die(3) function.

explain_message_errno_vfprintf
void explain_message_errno_vfprintf(char *message, int message_size, int errnum, FILE *fp, const char
*format, va_list ap);

Theexplain_message_errno_vfprintffunction is used to obtain an explanation of an error returned by the
vfprintf(3) system call. The least the message will contain is the value of strerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

981

explain_vfprintf(3) explain_vfprintf(3)

fp The original fp, exactly as passed to thevfprintf(3) system call.

format The original format, exactly as passed to thevfprintf(3) system call.

ap The original ap, exactly as passed to thevfprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL; if (vfprintf(fp, format, ap) < 0)
{

int err = errno;
char message[3000];

explain_message_errno_vfprintf(message, sizeof(message), err,
fp, format, ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vfprintf_or_die(3) function.

SEE ALSO
vfprintf(3)

formatted output conversion

explain_vfprintf_or_die(3)
formatted output conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

982

explain_vfprintf_or_die(3) explain_vfprintf_or_die(3)

NAME
explain_vfprintf_or_die − formatted output conversion and report errors

SYNOPSIS
#include <libexplain/vfprintf.h>

void explain_vfprintf_or_die(FILE *fp, const char *format, va_list ap);
int explain_vfprintf_on_error(FILE *fp, const char *format, va_list ap);

DESCRIPTION
Theexplain_vfprintf_or_die function is used to call thevfprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_vfprintf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_vfprintf_on_error function is used to call thevfprintf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_vfprintf(3) function, but still returns to the
caller.

fp The fp, exactly as to be passed to thevfprintf(3) system call.

format The format, exactly as to be passed to thevfprintf(3) system call.

ap The ap, exactly as to be passed to thevfprintf(3) system call.

RETURN VALUE
The explain_vfprintf_or_die function only returns on success, seevfprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_vfprintf_on_error function always returns the value return by the wrappedvfprintf(3) system
call.

EXAMPLE
Theexplain_vfprintf_or_die function is intended to be used in a fashion similar to the following example:

explain_vfprintf_or_die(fp, format, ap);

SEE ALSO
vfprintf(3)

formatted output conversion

explain_vfprintf(3)
explainvfprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

983

explain_vprintf(3) explain_vprintf(3)

NAME
explain_vprintf − explainvprintf(3) errors

SYNOPSIS
#include <libexplain/vprintf.h>

const char *explain_vprintf(const char *format, va_list ap);
const char *explain_errno_vprintf(int errnum, const char *format, va_list ap);
void explain_message_vprintf(char *message, int message_size, const char *format, va_list ap);
void explain_message_errno_vprintf(char *message, int message_size, int errnum, const char *format,
va_list ap);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thevprintf(3) system call.

explain_vprintf
const char *explain_vprintf(const char *format, va_list ap);

Theexplain_vprintf function is used to obtain an explanation of an error returned by thevprintf(3) system
call. The least the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

format The original format, exactly as passed to thevprintf(3) system call.

ap The original ap, exactly as passed to thevprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = vprintf(format, ap);
if (result < 0)
{

fprintf(stderr, "%s\n", explain_vprintf(format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vprintf_or_die(3) function.

explain_errno_vprintf
const char *explain_errno_vprintf(int errnum, const char *format, va_list ap);

Theexplain_errno_vprintf function is used to obtain an explanation of an error returned by thevprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

format The original format, exactly as passed to thevprintf(3) system call.

ap The original ap, exactly as passed to thevprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

984

explain_vprintf(3) explain_vprintf(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = vprintf(format, ap);
if (result < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_vprintf(err, format,
ap));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vprintf_or_die(3) function.

explain_message_vprintf
void explain_message_vprintf(char *message, int message_size, const char *format, va_list ap);

The explain_message_vprintffunction is used to obtain an explanation of an error returned by the
vprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

format The original format, exactly as passed to thevprintf(3) system call.

ap The original ap, exactly as passed to thevprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = vprintf(format, ap);
if (result < 0)
{

char message[3000];
explain_message_vprintf(message, sizeof(message), format, ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vprintf_or_die(3) function.

explain_message_errno_vprintf
void explain_message_errno_vprintf(char *message, int message_size, int errnum, const char *format,
va_list ap);

Theexplain_message_errno_vprintffunction is used to obtain an explanation of an error returned by the
vprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but usually
it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

985

explain_vprintf(3) explain_vprintf(3)

explained and this function, because many libc functions will alter the value oferrno.

format The original format, exactly as passed to thevprintf(3) system call.

ap The original ap, exactly as passed to thevprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = EINVAL;
int result = vprintf(format, ap);
if (result < 0)
{

int err = errno;
char message[3000];

explain_message_errno_vprintf(message, sizeof(message), err,
format, ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vprintf_or_die(3) function.

SEE ALSO
vprintf(3)

formatted output conversion

explain_vprintf_or_die(3)
formatted output conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

986

explain_vprintf_or_die(3) explain_vprintf_or_die(3)

NAME
explain_vprintf_or_die − formatted output conversion and report errors

SYNOPSIS
#include <libexplain/vprintf.h>

int explain_vprintf_or_die(const char *format, va_list ap);
int explain_vprintf_on_error(const char *format, va_list ap);

DESCRIPTION
The explain_vprintf_or_die function is used to call thevprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_vprintf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

Theexplain_vprintf_on_error function is used to call thevprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_vprintf(3) function, but still returns to the caller.

format The format, exactly as to be passed to thevprintf(3) system call.

ap The ap, exactly as to be passed to thevprintf(3) system call.

RETURN VALUE
The explain_vprintf_or_die function only returns on success, seevprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_vprintf_on_error function always returns the value return by the wrappedvprintf(3) system
call.

EXAMPLE
Theexplain_vprintf_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_vprintf_or_die(format, ap);

SEE ALSO
vprintf(3)

formatted output conversion

explain_vprintf(3)
explainvprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

987

explain_vsnprintf(3) explain_vsnprintf(3)

NAME
explain_vsnprintf − explainvsnprintf(3) errors

SYNOPSIS
#include <libexplain/vsnprintf.h>

const char *explain_vsnprintf(char *data, size_t data_size, const char *format, va_list ap);
const char *explain_errno_vsnprintf(int errnum, char *data, size_t data_size, const char *format, va_list
ap);
void explain_message_vsnprintf(char *message, int message_size, char *data, size_t data_size, const char
*format, va_list ap);
void explain_message_errno_vsnprintf(char *message, int message_size, int errnum, char *data, size_t
data_size, const char *format, va_list ap);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thevsnprintf(3) system call.

explain_vsnprintf
const char *explain_vsnprintf(char *data, size_t data_size, const char *format, va_list ap);

The explain_vsnprintf function is used to obtain an explanation of an error returned by thevsnprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thevsnprintf(3) system call.

data_size
The original data_size, exactly as passed to thevsnprintf(3) system call.

format The original format, exactly as passed to thevsnprintf(3) system call.

ap The original ap, exactly as passed to thevsnprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vsnprintf(data, data_size, format, ap);
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_vsnprintf(data, data_size,
format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vsnprintf_or_die(3) function.

explain_errno_vsnprintf
const char *explain_errno_vsnprintf(int errnum, char *data, size_t data_size, const char *format, va_list
ap);

The explain_errno_vsnprintf function is used to obtain an explanation of an error returned by the
vsnprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be

988

explain_vsnprintf(3) explain_vsnprintf(3)

explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thevsnprintf(3) system call.

data_size
The original data_size, exactly as passed to thevsnprintf(3) system call.

format The original format, exactly as passed to thevsnprintf(3) system call.

ap The original ap, exactly as passed to thevsnprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vsnprintf(data, data_size, format, ap);
if (result < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_vsnprintf(err, data,
data_size, format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vsnprintf_or_die(3) function.

explain_message_vsnprintf
void explain_message_vsnprintf(char *message, int message_size, char *data, size_t data_size, const char
*format, va_list ap);

The explain_message_vsnprintffunction is used to obtain an explanation of an error returned by the
vsnprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thevsnprintf(3) system call.

data_size
The original data_size, exactly as passed to thevsnprintf(3) system call.

format The original format, exactly as passed to thevsnprintf(3) system call.

ap The original ap, exactly as passed to thevsnprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vsnprintf(data, data_size, format, ap);
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_vsnprintf(message, sizeof(message), data,
data_size, format, ap);
fprintf(stderr, "%s\n", message);

989

explain_vsnprintf(3) explain_vsnprintf(3)

exit(EXIT_FAILURE);
}

The above code example is available pre-packaged as theexplain_vsnprintf_or_die(3) function.

explain_message_errno_vsnprintf
void explain_message_errno_vsnprintf(char *message, int message_size, int errnum, char *data, size_t
data_size, const char *format, va_list ap);

The explain_message_errno_vsnprintffunction is used to obtain an explanation of an error returned by
the vsnprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thevsnprintf(3) system call.

data_size
The original data_size, exactly as passed to thevsnprintf(3) system call.

format The original format, exactly as passed to thevsnprintf(3) system call.

ap The original ap, exactly as passed to thevsnprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vsnprintf(data, data_size, format, ap);
if (result < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_vsnprintf(message, sizeof(message), err,
data, data_size, format, ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vsnprintf_or_die(3) function.

SEE ALSO
vsnprintf(3)

formatted output conversion

explain_vsnprintf_or_die(3)
formatted output conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

990

explain_vsnprintf_or_die(3) explain_vsnprintf_or_die(3)

NAME
explain_vsnprintf_or_die − formatted output conversion and report errors

SYNOPSIS
#include <libexplain/vsnprintf.h>

int explain_vsnprintf_or_die(char *data, size_t data_size, const char *format, va_list ap);
int explain_vsnprintf_on_error(char *data, size_t data_size, const char *format, va_list ap);

DESCRIPTION
The explain_vsnprintf_or_die function is used to call thevsnprintf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_vsnprintf(3) function, and then the process
terminates by callingexit(EXIT_FAILURE) .

The explain_vsnprintf_on_error function is used to call thevsnprintf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_vsnprintf(3) function, but still returns to the
caller.

data The data, exactly as to be passed to thevsnprintf(3) system call.

data_size
The data_size, exactly as to be passed to thevsnprintf(3) system call.

format The format, exactly as to be passed to thevsnprintf(3) system call.

ap The ap, exactly as to be passed to thevsnprintf(3) system call.

RETURN VALUE
Theexplain_vsnprintf_or_die function only returns on success, seevsnprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

The explain_vsnprintf_on_error function always returns the value return by the wrappedvsnprintf(3)
system call.

EXAMPLE
The explain_vsnprintf_or_die function is intended to be used in a fashion similar to the following
example:

int result = explain_vsnprintf_or_die(data, data_size, format, ap);

SEE ALSO
vsnprintf(3)

formatted output conversion

explain_vsnprintf(3)
explainvsnprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

991

explain_vsprintf(3) explain_vsprintf(3)

NAME
explain_vsprintf − explainvsprintf(3) errors

SYNOPSIS
#include <libexplain/vsprintf.h>

const char *explain_vsprintf(char *data, const char *format, va_list ap);
const char *explain_errno_vsprintf(int errnum, char *data, const char *format, va_list ap);
void explain_message_vsprintf(char *message, int message_size, char *data, const char *format, va_list
ap);
void explain_message_errno_vsprintf(char *message, int message_size, int errnum, char *data, const char
*format, va_list ap);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thevsprintf(3) system call.

explain_vsprintf
const char *explain_vsprintf(char *data, const char *format, va_list ap);

The explain_vsprintf function is used to obtain an explanation of an error returned by thevsprintf(3)
system call. The least the message will contain is the value ofstrerror(errno) , but usually it will do
much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

data The original data, exactly as passed to thevsprintf(3) system call.

format The original format, exactly as passed to thevsprintf(3) system call.

ap The original ap, exactly as passed to thevsprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vsprintf(data, format, ap);
if (result < 0 && errno != 0)
{

fprintf(stderr, "%s\n", explain_vsprintf(data, format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vsprintf_or_die(3) function.

explain_errno_vsprintf
const char *explain_errno_vsprintf(int errnum, char *data, const char *format, va_list ap);

The explain_errno_vsprintf function is used to obtain an explanation of an error returned by the
vsprintf(3) system call.The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thevsprintf(3) system call.

format The original format, exactly as passed to thevsprintf(3) system call.

992

explain_vsprintf(3) explain_vsprintf(3)

ap The original ap, exactly as passed to thevsprintf(3) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions which
do not supply a buffer in their argument list. This will be overwritten by the next call to any
libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vsprintf(data, format, ap);
if (result < 0 && errno != 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_vsprintf(err, data,
format, ap));
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vsprintf_or_die(3) function.

explain_message_vsprintf
void explain_message_vsprintf(char *message, int message_size, char *data, const char *format, va_list
ap);

The explain_message_vsprintffunction is used to obtain an explanation of an error returned by the
vsprintf(3) system call. The least the message will contain is the value ofstrerror(errno) , but
usually it will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

data The original data, exactly as passed to thevsprintf(3) system call.

format The original format, exactly as passed to thevsprintf(3) system call.

ap The original ap, exactly as passed to thevsprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vsprintf(data, format, ap);
if (result < 0 && errno != 0)
{

char message[3000];
explain_message_vsprintf(message, sizeof(message), data,
format, ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vsprintf_or_die(3) function.

explain_message_errno_vsprintf
void explain_message_errno_vsprintf(char *message, int message_size, int errnum, char *data, const char
*format, va_list ap);

Theexplain_message_errno_vsprintffunction is used to obtain an explanation of an error returned by the
vsprintf(3) system call.The least the message will contain is the value ofstrerror(errno) , but

993

explain_vsprintf(3) explain_vsprintf(3)

usually it will do much better, and indicate the underlying cause in more detail.

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

data The original data, exactly as passed to thevsprintf(3) system call.

format The original format, exactly as passed to thevsprintf(3) system call.

ap The original ap, exactly as passed to thevsprintf(3) system call.

Example: This function is intended to be used in a fashion similar to the following example:
errno = 0;
int result = vsprintf(data, format, ap);
if (result < 0 && errno != 0)
{

int err = errno;
char message[3000];

explain_message_errno_vsprintf(message, sizeof(message), err,
data, format, ap);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

The above code example is available pre-packaged as theexplain_vsprintf_or_die(3) function.

SEE ALSO
vsprintf(3)

formatted output conversion

explain_vsprintf_or_die(3)
formatted output conversion and report errors

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

994

explain_vsprintf_or_die(3) explain_vsprintf_or_die(3)

NAME
explain_vsprintf_or_die − formatted output conversion and report errors

SYNOPSIS
#include <libexplain/vsprintf.h>

int explain_vsprintf_or_die(char *data, const char *format, va_list ap);
int explain_vsprintf_on_error(char *data, const char *format, va_list ap);

DESCRIPTION
Theexplain_vsprintf_or_die function is used to call thevsprintf(3) system call. On failure an explanation
will be printed tostderr, obtained from theexplain_vsprintf(3) function, and then the process terminates by
callingexit(EXIT_FAILURE) .

The explain_vsprintf_on_error function is used to call thevsprintf(3) system call. On failure an
explanation will be printed tostderr, obtained from theexplain_vsprintf(3) function, but still returns to the
caller.

data The data, exactly as to be passed to thevsprintf(3) system call.

format The format, exactly as to be passed to thevsprintf(3) system call.

ap The ap, exactly as to be passed to thevsprintf(3) system call.

RETURN VALUE
The explain_vsprintf_or_die function only returns on success, seevsprintf(3) for more information. On
failure, prints an explanation and exits, it does not return.

Theexplain_vsprintf_on_error function always returns the value return by the wrappedvsprintf(3) system
call.

EXAMPLE
Theexplain_vsprintf_or_die function is intended to be used in a fashion similar to the following example:

int result = explain_vsprintf_or_die(data, format, ap);

SEE ALSO
vsprintf(3)

formatted output conversion

explain_vsprintf(3)
explainvsprintf(3) errors

exit(2) terminate the calling process

COPYRIGHT
libexplain version 1.4
Copyright © 2010 Peter Miller

995

explain_wait(3) explain_wait(3)

NAME
explain_wait − explain wait(2) errors

SYNOPSIS
#include <libexplain/wait.h>

const char *explain_wait(int *status);
const char *explain_errno_wait(int errnum, int *status);
void explain_message_wait(char *message, int message_size, int *status);
void explain_message_errno_wait(char *message, int message_size, int errnum, int *status);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thewait(2) system call.

explain_wait
const char *explain_wait(int *status);

Theexplain_wait function is used to obtain an explanation of an error returned by thewait(2) system call.
The least the message will contain is the value ofstrerror(errno) , but usually it will do much better,
and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (wait(status) < 0)
{

fprintf(stderr, "%s\n", explain_wait(status));
exit(EXIT_FAILURE);

}

status The original status, exactly as passed to thewait(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_wait
const char *explain_errno_wait(int errnum, int *status);

The explain_errno_wait function is used to obtain an explanation of an error returned by thewait(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (wait(status) < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_wait(err, status));
exit(EXIT_FAILURE);

}

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called.This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

status The original status, exactly as passed to thewait(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list.This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

996

explain_wait(3) explain_wait(3)

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_message_wait
void explain_message_wait(char *message, int message_size, int *status);

The explain_message_waitfunction may be used to obtain an explanation of an error returned by the
wait(2) system call. The least the message will contain is the value ofstrerror(errno) , but usually it
will do much better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
if (wait(status) < 0)
{

char message[3000];
explain_message_wait(message, sizeof(message), status);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

status The original status, exactly as passed to thewait(2) system call.

explain_message_errno_wait
void explain_message_errno_wait(char *message, int message_size, int errnum, int *status);

The explain_message_errno_waitfunction may be used to obtain an explanation of an error returned by
the wait(2) system call. The least the message will contain is the value ofstrerror(errnum) , but
usually it will do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
if (wait(status) < 0)
{

int err = errno;
char message[3000];
explain_message_errno_wait(message, sizeof(message), err, status);
fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

message The location in which to store the returned message. If a suitable message return buffer is
supplied, this function is thread safe.

message_size
The size in bytes of the location in which to store the returned message.

errnum The error value to be decoded, usually obtained from theerrno global variable just before this
function is called. This is necessary if you need to callany code between the system call to be
explained and this function, because many libc functions will alter the value oferrno.

status The original status, exactly as passed to thewait(2) system call.

SEE ALSO
wait(2) wait for process to change state

explain_wait_or_die(3)
wait for process to change state and report errors

997

explain_wait(3) explain_wait(3)

COPYRIGHT
libexplain version 1.4
Copyright © 2008 Peter Miller

998

explain_wait3(3) explain_wait3(3)

NAME
explain_wait3 − explain wait3(2) errors

SYNOPSIS
#include <libexplain/wait3.h>

const char *explain_wait3(int *status, int options, struct rusage *rusage);
const char *explain_errno_wait3(int errnum, int *status, int options, struct rusage *rusage);
void explain_message_wait3(char *message, int message_size, int *status, int options, struct rusage
*rusage);
void explain_message_errno_wait3(char *message, int message_size, int errnum, int *status, int options,
struct rusage *rusage);

DESCRIPTION
These functions may be used to obtain explanations for errors returned by thewait3(2) system call.

explain_wait3
const char *explain_wait3(int *status, int options, struct rusage *rusage);

The explain_wait3 function is used to obtain an explanation of an error returned by thewait3(2) system
call. Theleast the message will contain is the value ofstrerror(errno) , but usually it will do much
better, and indicate the underlying cause in more detail.

Theerrnoglobal variable will be used to obtain the error value to be decoded.

This function is intended to be used in a fashion similar to the following example:
int pid = wait3(status, options, rusage);
if (pid < 0)
{

fprintf(stderr, "%s\n", explain_wait3(status, options, rusage));
exit(EXIT_FAILURE);

}

status The original status, exactly as passed to thewait3(2) system call.

options The original options, exactly as passed to thewait3(2) system call.

rusage The original rusage, exactly as passed to thewait3(2) system call.

Returns: The message explaining the error. This message buffer is shared by all libexplain functions
which do not supply a buffer in their argument list. This will be overwritten by the next call to
any libexplain function which shares this buffer, including other threads.

Note: This function isnot thread safe, because it shares a return buffer across all threads, and many other
functions in this library.

explain_errno_wait3
const char *explain_errno_wait3(int errnum, int *status, int options, struct rusage *rusage);

The explain_errno_wait3 function is used to obtain an explanation of an error returned by thewait3(2)
system call. The least the message will contain is the value ofstrerror(errnum) , but usually it will
do much better, and indicate the underlying cause in more detail.

This function is intended to be used in a fashion similar to the following example:
int pid = wait3(status, options, rusage);
if (pid < 0)
{

int err = errno;
fprintf(stderr, "%s\n", explain_errno_wait3(err, status, options,

rusage));
exit(EXIT_FAILURE);

}

999

